Abstract
The electron paramagnetic resonance (EPR) parameters (g factor gi, and hyperfine structure constants Ai, with i = x, y, z) and local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) are theoretically investigated using the high order perturbation formulas of these EPR parameters for a 3d9 ion under orthorhombically elongated octahedra. In the calculations, contribution to these EPR parameters due to the admixture of d-orbitals in the ground state wave function of the Cu2+ ion are taken into account based on the cluster approach, and the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the studied EPR parameters with the local structures of the Cu2+ centers. Based on the calculations, the Cu–H2O bonds are found to suffer the axial elongation ratio δ of about 3 and 2.9% along the z-axis, meanwhile, the planar bond lengths may experience variation ratio τ (≈3.8 and 1%) along x- and y-axis for Cu2+ center in (NH4)2Zn(SO4)2·6H2O and Rb2Zn(SO4)2·6H2O, respectively. The theoretical results show good agreement with the observed values.
Funding source: Foundation of Jiangxi Educational Committee
Award Identifier / Grant number: 6000216
Funding source: Chinese Natural Science Foundation
Award Identifier / Grant number: 11865013
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was financially supported by the Foundation of Jiangxi Educational Committee (6000216) and Chinese Natural Science Foundation (Grant No. 11865013).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] S. Ghosh, A. H. Lima, L. S. Flôres, et al.., “Growth and characterization of ammonium nickel-copper sulfate hexahydrate: A new crystal of Tutton’s salt family for the application in solar-blind technology,” Opt. Mater., vol. 85, p. 425, 2018, https://doi.org/10.1016/j.optmat.2018.09.004.Suche in Google Scholar
[2] A. R. Lim and S. H. Kim,“Structural and thermodynamic properties of Tutton salt K2Zn(SO4)2·6H2O,” J. Therm. Anal. Calorim., vol. 123, p. 371, 2016, https://doi.org/10.1007/s10973-015-4865-9.Suche in Google Scholar
[3] K. Kambe, S. Koide, and T. Usui,“Theory of some magnetic properties of cobalt Tutton salts,” Prog. Theor. Phys., vol. 7, p. 15, 1952, https://doi.org/10.1143/ptp/7.1.15.Suche in Google Scholar
[4] S. Ghosh, S. Ullah, J. P. A. de Mendonça, et al..,“Electronic properties and vibrational spectra of (NH4)2M″(SO4)2·6H2O (M = Ni, Cu) Tutton’s salt: DFT and experimental study,” Spectrochim. Acta A, vol. 218, p. 281, 2019, https://doi.org/10.1016/j.saa.2019.04.023.Suche in Google Scholar
[5] V. E. Petrashen, Y. V. Yablokov, and R. L. Davidovich,“The lattice structure parameters and configuration of Cu2+ Jahn-Teller centres in Tutton salt crystals,” Phys. Status Solidi B, vol. 101, p. 117, 1980, https://doi.org/10.1002/pssb.2221010112.Suche in Google Scholar
[6] P. Sivaprasad, K. Ramesh, and Y. P. Reddy, “Optical and EPR studies of VO2+ and Cu2+ in Rb2Cd(SO4)2.6H2O,” J. Phys. Condens. Mat., vol. 2, p. 5595, 1990, https://doi.org/10.1088/0953-8984/2/25/011.Suche in Google Scholar
[7] V. E. Petrashen, Yu. V. Yablokov, and R. L. Davidovich, “The lattice structure parameters and configuration of Cu2+ Jahn-Teller centres in Tutton salt crystals,” Phys. Status Solidi B, vol. 101, p. 117, 1980, https://doi.org/10.1002/pssb.2221010112.Suche in Google Scholar
[8] W. C. Zheng, D. T. Zhang, P. Su, and H. G. Liu, “Studies of the optical band positions and EPR g factors for Cu(H2O)62+ centers in Tutton salt crystals,” Spectrochim. Acta A, vol. 81, p. 548, 2011, https://doi.org/10.1016/j.saa.2011.06.049.Suche in Google Scholar
[9] J. A. Aramburu, A. Bhowmik, J. M. Garcia-Lastra, P. García-Fernández, and M. Moreno, “Insight into compounds with Cu(H2O)62+units: New ideas for understanding Cu2+ in Tutton salts,” J. Phys. Chem. C, vol. 123, p. 3088, 2019, https://doi.org/10.1021/acs.jpcc.8b10441.Suche in Google Scholar
[10] H. M. Zhang, “Investigation on the EPR parameters and local structure for the Cu2+ center in ZnAl2O4 spinel,” J. Magn. Magn Mater., vol. 389, p. 176, 2015, https://doi.org/10.1016/j.jmmm.2015.04.066.Suche in Google Scholar
[11] K. S. Hadler, J. R. Kilmartin, G. R. Hanson, M. A. Hitchman, C. J. Simmons, and M. J. Riley, “Vibronic effects in Cu(II)-doped Ba2Zn(HCO2)6·4H2O,” Inorg. Chem., vol. 47, p. 8188, 2008, https://doi.org/10.1021/ic8007206.Suche in Google Scholar
[12] H. M. Zhang, X. Wan, and Z. M. Zhang, “Theoretical studies of the spin Hamiltonian parameters and local structures for the tetragonal Cu2+ and Ni3+ centers in Mg2TiO4,” J. Alloy Compd., vol. 549, p. 226, 2013, https://doi.org/10.1016/j.jallcom.2012.09.078.Suche in Google Scholar
[13] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford, Clarendon Press, 1970.Suche in Google Scholar
[14] H. M. Zhang, S. Y. Wu, M. Q. Kuang, and Z. H. Zhang, “Investigation of the EPR parameters and local structures for Cu2+ in Bis(l-asparaginato) M(II) catalysts (M=Zn, Cd, Mg),” J. Phys. Chem. Solids, vol. 73, p. 846, 2012, https://doi.org/10.1016/j.jpcs.2012.02.021.Suche in Google Scholar
[15] H. M. Zhang, B. J. Chen, C. D. Feng, and W. B. Xiao, “Studies of the local distortions for Cu2+ in Ba2Zn(HCOO)6·4H2O single crystal,” Appl. Magn. Reson., vol. 50, p. 1205, 2019, https://doi.org/10.1007/s00723-019-01145-5.Suche in Google Scholar
[16] R. Tapramaz, B. Karabulut, and F. Koksal, “EPR spectra of VO2+ and Cu2+ ions in di-ammonium d-tartrate single crystals,” J. Phys. Chem. Solids, vol. 61, p. 1367, 2000, https://doi.org/10.1016/s0022-3697(00)00024-x.Suche in Google Scholar
[17] E. Borkurt, I. Kartal, B. Karabulet, and I. Ucar, “EPR study of Cu2+-doped tetraaqua-di(nicotinamide)Co(II) saccharinate single crystals,” Spectrochim. Acta A, vol. 71, p. 794, 2008, https://doi.org/10.1016/j.saa.2008.02.001.Suche in Google Scholar
[18] H. N. Dong, S. Y. Wu, and P. Li, “Theoretical explanation of EPR parameters for Cu2+ ion in TiO2 crystal,” Phys. Status Solidi (b), vol. 241, p. 1935, 2004, https://doi.org/10.1002/pssb.200402033.Suche in Google Scholar
[19] C. Y. Li, S. F. Liu, and J. X. Fu, “Investigations of the EPR parameters and local lattice structure for the rhombic Cu2+ centre in TZSH crystal,” Z. Naturforsch., vol. 71a, p. 255, 2016, https://doi.org/10.1515/zna-2015-0396.Suche in Google Scholar
[20] J. S. Griffith, The Theory of Transition-Metal Ions, London, Cambridge University Press, 1964.Suche in Google Scholar
[21] C. C. Ding, S. Y. Wu, X. F. Hu, G. L. Li, and Y. Q. Xu, “An investigation of the local distortions and the EPR parameters for Cu2+ in 40MgO-(10−x)PbF2-50SiO2-xCuO glasses,” J. Alloy Compd., vol. 664, p. 250, 2016, https://doi.org/10.1016/j.jallcom.2015.12.232.Suche in Google Scholar
[22] B. R. McGarvey, “The isotropic hyperfine interaction,” J. Phys. Chem., vol. 71, p. 51, 1967, https://doi.org/10.1021/j100860a007.Suche in Google Scholar
[23] D. J. Newman and B. Ng, “The superposition model of crystal fields,” Rep. Prog. Phys., vol. 52, p. 699, 1989, https://doi.org/10.1088/0034-4885/52/6/002.Suche in Google Scholar
[24] Y. X. Hu, S. Y. Wu, and X. F. Wang, “Spin Hamiltonian parameters and local structures for tetragonal and orthorhombic Ir2+ centers in AgCl,” Philos. Mag., vol. 90, p. 1391, 2010, https://doi.org/10.1080/14786430903369585.Suche in Google Scholar
[25] C. C. Ding, S. Y. Wu, M. Q. Kuang, X. F. Hu, and G. L. Li, “Studies of the local distortions and the EPR parameters for Cu2+ in xLi2O-(30-x)Na2O-69·5B2O glasses,” Z. Naturforsch., vol. 71a, p. 249, 2016, https://doi.org/10.1515/zna-2015-0453.Suche in Google Scholar
[26] H. N. Dong and P. Li, “Theoretical studies of the g factors and local structure for the tetragonal Nd3+ center in SrTiO3,” Spectrochim. Acta A, vol. 76, p. 33, 2010, https://doi.org/10.1016/j.saa.2010.02.041.Suche in Google Scholar
[27] H. M. Zhang, J. H. Duan, W. B. Xiao, and X. Wan, “Theoretical studies of the local structure of Cu2+ center in aluminium lead borate glasses by their EPR and optical spectra,” J. Non Cryst. Solids, vol. 425, p. 173, 2015, https://doi.org/10.1016/j.jnoncrysol.2015.05.043.Suche in Google Scholar
[28] S. Y. Wu and H. N. Dong, “Studies on the EPR parameters for the rhombic Co2+ center in magnesium acetate,” Z. Naturforsch., vol. 60a, p. 545, 2005, https://doi.org/10.1515/zna-2005-0714.Suche in Google Scholar
[29] S. Y. Wu, H. M. Zhang, P. Xu, and S. X. Zhang, “Studies on the defect structure for Cu2+ in CdSe nanocrystals,” Spectrochim. Acta A, vol. 75, p. 230, 2010, https://doi.org/10.1016/j.saa.2009.10.016.Suche in Google Scholar
[30] C. Y. Li and X. M. Zheng, “Theoretical studies of the local structures and EPR spectra for VO2+ in MB4O7(M = Zn, Cd) glasses,” Acta Phys. Pol., A, vol. 125, p. 73, 2014, https://doi.org/10.12693/aphyspola.125.73.Suche in Google Scholar
[31] H. N. Dong and X. S. Liu, “Investigations on the local structure and EPR parameters for the trigonal Nd3+ centre in CdS,” Mol. Phys., vol. 113, p. 492, 2015, https://doi.org/10.1080/00268976.2014.954018.Suche in Google Scholar
[32] Y. Q. Xu, S. Y. Wu, M. Q. Kuang, X. F. Hu, and C. C. Ding, “Calculations of the local structure and EPR parameters for Cu2+ ions in xMgO-(30 − x)Na2O-69B2O3 glasses at different composition x,” J. Non Cryst. Solids, vol. 432, p. 535, 2016, https://doi.org/10.1016/j.jnoncrysol.2015.11.018.Suche in Google Scholar
[33] H. M. Zhang and X. Wan, “Theoretical studies of spin Hamiltonian parameters for the tetragonally elongated Cu2+ centers in ARbB4O7 (A = Li, Na, K) glasses,” J. Non Cryst. Solids, vol. 361, p. 43, 2013, https://doi.org/10.1016/j.jnoncrysol.2012.10.019.Suche in Google Scholar
[34] W. C. Zheng, D. T. Zhang, L. He, and P. Su, “,” Phys. Scr., vol. 84, p. 025702, 2011, https://doi.org/10.1088/0031-8949/84/02/025702.Suche in Google Scholar
[35] C. Y. Li, S. F. Liu, and J. X. Fu, “Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate,” Radiat. Eff. Defect. S., vol. 170, p. 894, 2015, https://doi.org/10.1080/10420150.2015.1131686.Suche in Google Scholar
[36] M. Q. Kuang, S. Y. Wu, X. F. Hu, and B. T. Song, “Theoretical investigations of spin Hamilton parameters and Knight shifts for rhombic and tetragonal CuGeO3,” Physica B, vol. 417, p. 13, 2013, https://doi.org/10.1016/j.physb.2013.02.029.Suche in Google Scholar
[37] H. M. Zhang, S. Y. Wu, Z. H. Zhang, and P. Xu, “Investigations on the local structure and spin Hamiltonian parameters for the orthorhombic Cu2+ center in Ca(OD)2,” J. Struct. Chem., vol. 53, p. 260, 2012, https://doi.org/10.1134/s0022476612020084.Suche in Google Scholar
[38] K. H. Karlsson and T. Perander, “Linear trends aiding interpretation and prediction of optical spectra of transition metal ions,” Chem. Scr., vol. 3, p. 201, 1973.Suche in Google Scholar
[39] C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes, Oxford, Pergamon Press, 1962.10.1016/B978-0-08-009627-8.50016-XSuche in Google Scholar
[40] Y. D. Li, B. J. Chen, C. Yan, H. M. Zhang, and W. B. Xiao, “Studies of the EPR parameters and tetragonal distortion for the Cu2+ center in aluminium oxide,” Radiat. Eff. Defect. S., vol. 175, p. 952, 2020, https://doi.org/10.1080/10420150.2020.1793340.Suche in Google Scholar
[41] H. M. Zhang, W. B. Xiao, and X. Wan, “Theoretical studies of the EPR parameters and local structures for Cu2+ centres in a (CH3)2NH2Al(SO4)2·6H2O crystal,” Eur. Phys. J. D, vol. 68, p. 313, 2014, https://doi.org/10.1140/epjd/e2014-50359-0.Suche in Google Scholar
[42] W. Q. Yang, L. He, H. G. Liu, and W. C. Zheng, “Studies of the tetragonal distortion due to Jahn–Teller effect for the Cu2+ centres in trigonal ZnMF6·6H2O (M = Si, Ti, Zr) crystals from the calculations of spin‐Hamiltonian parameters,” Phys. Status Solidi B, vol. 246, p. 1915, 2009, https://doi.org/10.1002/pssb.200945046.Suche in Google Scholar
[43] M. A. Hitchman and T. D. Waite, “Electronic spectrum of the hexaaquocopper(2+) ion,” Inorg. Chem., vol. 15, p. 2150, 1976, https://doi.org/10.1021/ic50163a030.Suche in Google Scholar
[44] Y. P. Huang, L. J. Wang, and W. L. Feng, “Theoretical investigation of the local structure of the KH2PO4: Cu2+ single crystal,” Radiat. Eff. Defect. S., vol. 164, p. 183, 2009, https://doi.org/10.1080/10420150802318703.Suche in Google Scholar
[45] Z. Yarbaşi, A. Karabulut, and B. Karabulut, “EPR studies of copper-doped potassium dihydrogen citrate (C6H7KO7) single crystal,” Appl. Magn. Reson., vol. 41, p. 51, 2011.10.1007/s00723-011-0244-2Suche in Google Scholar
[46] H. M. Zhang, W. B. Xiao, and X. Wan, “Theoretical studies of the local structures and electron paramagnetic resonance parameters for Cu2+ center in Zn(C3H3O4)2(H2O)2 single crystal,” Radiat. Eff. Defect. S., vol. 169, p. 603, 2014, https://doi.org/10.1080/10420150.2014.913590.Suche in Google Scholar
[47] S. Dhanuskodi and S. Manikandan, “EPR studies of Cu2+ doped TGSP single crystals,” Ferroelectrics, vol. 234, p. 183, 1999, https://doi.org/10.1080/00150199908225292.Suche in Google Scholar
[48] F. Köksal, B. Karabulut, and Y. Yerli, “Electron paramagnetic resonance of Cu2+ in Na3PO4·8H2O single crystal,” Int. J. Inorg. Mater., vol. 3, p. 413, 2001, https://doi.org/10.1016/s1466-6049(01)00017-4.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Rapid Communication
- All waves have a zero tunneling time
- Atomic, Molecular & Chemical Physics
- Studies of local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) crystals
- Dynamical Systems & Nonlinear Phenomena
- Dynamics of liquid drop on a vibrating micro-perforated plate
- Inverse scattering method for the Kundu-Eckhaus equation with zero/nonzero boundary conditions
- Evolution of nonlinear stationary formations in a quantum plasma at finite temperature
- Solid State Physics & Materials Science
- Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound
- First-principles study on band gaps and transport properties of van der Waals WSe2/WTe2 heterostructure
- Dirac cones for graph models of multilayer AA-stacked graphene sheets
Artikel in diesem Heft
- Frontmatter
- General
- Rapid Communication
- All waves have a zero tunneling time
- Atomic, Molecular & Chemical Physics
- Studies of local structures for Cu2+ centers in M2Zn(SO4)2·6H2O (M = NH4 and Rb) crystals
- Dynamical Systems & Nonlinear Phenomena
- Dynamics of liquid drop on a vibrating micro-perforated plate
- Inverse scattering method for the Kundu-Eckhaus equation with zero/nonzero boundary conditions
- Evolution of nonlinear stationary formations in a quantum plasma at finite temperature
- Solid State Physics & Materials Science
- Effect of ZnO nanoparticles on optical textures and image analysis properties of 7O.O5 liquid crystalline compound
- First-principles study on band gaps and transport properties of van der Waals WSe2/WTe2 heterostructure
- Dirac cones for graph models of multilayer AA-stacked graphene sheets