Abstract
Jeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.
References
[1] A. K. Harding and D. Lai, Rep. Prog. Phys. 69, 2631 (2006).10.1088/0034-4885/69/9/R03Suche in Google Scholar
[2] S. Chandrashekhar, J. Astrophys. 74, 81 (1931).10.1086/143324Suche in Google Scholar
[3] S. Chandrashekhar, Philos. Mag. 11, 592 (1931).10.1080/14786443109461710Suche in Google Scholar
[4] R. L. Merlino, Plasma Physics Applied, Transworld Research Network, Kerala, India 2006, p. 73, ISBN: 81-7895-230-0.Suche in Google Scholar
[5] F. Verheest, Waves in Dusty Space Plasmas, Kluwer Academic Publishers, The Netherlands 2000.10.1007/978-94-010-9945-5Suche in Google Scholar
[6] H. Ikezi, Phys. Fluids 29, 1764 (1986).10.1063/1.865653Suche in Google Scholar
[7] Th. Trottenberg, A. Melzer, and A. Piel, Plasma Sources Sci. 4, 450 (1995).10.1088/0963-0252/4/3/015Suche in Google Scholar
[8] E. Garcia-Berro, S. Torres, L. G. Althaus, I. Renedo, P. Lorén-Aguilar, et al., Nature 465, 194 (2010).10.1038/nature09045Suche in Google Scholar PubMed
[9] H. N. van Horn, Astrophys. J. 151, 277 (1968).10.1086/149432Suche in Google Scholar
[10] U. M. Abdelsalam, S. Ali, and I. Kourakis, Phys. Plasmas 19, 062107 (2012).10.1063/1.4729661Suche in Google Scholar
[11] S. Ali and P. K. Shukla, Phys. Plasmas 13, 022313 (2006).10.1063/1.2173518Suche in Google Scholar
[12] R. X. Luo, H. Chen, and S. Q. Liu, IEEE Trans. Plasma Sci. 43, 1845 (2015).10.1109/TPS.2015.2427842Suche in Google Scholar
[13] P. K. Shukla and S. Ali, Phys. Plasmas 12, 114502 (2005).10.1063/1.2136376Suche in Google Scholar
[14] Y. Xiu-Feng, W. Shan-Jin, C. Jian-Min, S. Yu-Ren, L. Mai-Mai, et al., Chin. Phys. B 21, 055202 (2012).10.1088/1674-1056/21/5/055202Suche in Google Scholar
[15] H. Ren, Z. Wu, J. Cao, and P. K. Chu, Phys. Plasmas 16, 103705 (2009).10.1063/1.3257170Suche in Google Scholar
[16] M. Harwit, Astrophysical Concepts, Springer, USA 2006.Suche in Google Scholar
[17] D. A. Mendis and M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).10.1146/annurev.aa.32.090194.002223Suche in Google Scholar
[18] M. Horanyi, Annu. Rev. Astron. Astrophys. 34, 383 (1996).10.1146/annurev.astro.34.1.383Suche in Google Scholar
[19] F. Verheest, Space Sci. Rev. 77, 267 (1996).10.1007/BF00226225Suche in Google Scholar
[20] V. V. Yaroshenko, Y. Voitenko, and M. Goossens, Phys. Plasmas 9, 1520 (2002).10.1063/1.1465417Suche in Google Scholar
[21] L. Davis, R. Lust, and A. Schluter, Z. Naturforsch, 13, 916 (1958).10.1515/zna-1958-1102Suche in Google Scholar
[22] C. S. Gardner, H. Goertzel, H. Grad, C. S. Morawetz, M. H. Rose, et al., Proc. 2nd U.N. Intern. Conf. of Peaceful Uses of Atomic Energy, vol. 31, United Nations Publication, UK 1958, p. 230.Suche in Google Scholar
[23] R. Z. Sagdeev, in: Plasma Physics and the Problem of Controlled Thermonuclear Research, vol. 5, (Ed. L. A. Artsimovich), Pergamon Press, London 1958, p. 454.Suche in Google Scholar
[24] R. P. Prajapati and R. K. Chhajlani, Acta Tech. 56, T414 (2011).Suche in Google Scholar
[25] R. P. Prajapati, P. K. Sharma, R. K. Sanghvi, and R. K. Chhajlani, J. Phys. Conf. Ser. 365, 012040 (2012).10.1088/1742-6596/365/1/012040Suche in Google Scholar
[26] H. Ren, Z. Wu, J. Cao, and P. K. Chu, Phys. Plasmas 16, 072101 (2009).10.1063/1.3168612Suche in Google Scholar
[27] M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, Phys. Plasmas 16, 014502 (2009).10.1063/1.3070664Suche in Google Scholar
[28] W-P. Honga and Y-D. Jung, Phys. Lett. A, 379, 2740 (2015).10.1016/j.physleta.2015.08.018Suche in Google Scholar
[29] P. Bliokh, V. Sinitsin, and V. Yaroshenko, Dusty and Self-Gravitational Plasmas in Space, Springer Science+Business Media, Dordrecht 1995, ISBN 978-94-015-8557-6 (eBook).10.1007/978-94-015-8557-6Suche in Google Scholar
[30] A. Piel and A Melzer, Plasma Phys. Contr. F. 44, R1 (2002).10.1088/0741-3335/44/1/201Suche in Google Scholar
[31] C. Hollenstein, Plasma Phys. Contr. F 42, R93 (2000).10.1088/0741-3335/42/10/201Suche in Google Scholar
[32] L. Brey, J. Dempsey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B 42, 1240 (1990).10.1103/PhysRevB.42.1240Suche in Google Scholar PubMed
[33] W-P. Hong, M. Jamil, A. Rasheed, and Y-D. Jung, Z. Naturforsch. 70, 413 (2015).10.1515/zna-2015-0080Suche in Google Scholar
[34] W-P. Hong, M. Jamil, A. Rasheed, and Y-D. Jung, Phys. Plasmas 22, 073302 (2015).10.1063/1.4927134Suche in Google Scholar
[35] A. Abdikian and Z. Ehsan, Phys. Lett. A 381, 2939 (2017).10.1016/j.physleta.2017.07.020Suche in Google Scholar
[36] F. Verheest, P. Meuris, R. L. Mace, and M. A. Hellberg, Astrophys. Space Sci. 254, 253 (1997).10.1023/A:1000818113015Suche in Google Scholar
[37] S. Hussain and S. Mahmooda, Phys. Plasmas 24, 032122 (2017).10.1063/1.4979131Suche in Google Scholar
[38] U. de Angelis, Phys. Scr. 45, 465 (1992).10.1088/0031-8949/45/5/010Suche in Google Scholar
[39] P. Sharma, S. Jain, and R. P. Prajapati, IEEE Trans. Plasma Sci. 44, 1 (2016).10.1109/TPS.2016.2626427Suche in Google Scholar
[40] M. Jamil, M. Shahid, I. Zeba, M. Salimullah, H. A. Shah, et al., Phys. Plasmas 19, 023705 (2012).10.1063/1.3684641Suche in Google Scholar
[41] G. Chabrier, F. Douchin, and A. Y. Potekhin, J. Phys. Condens. Matter 14, 9133 (2002).10.1088/0953-8984/14/40/307Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0
Artikel in diesem Heft
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0