Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
-
Kevin Gooniah
, Hanshika Jhurree , Dooshika Shiwpursad , Lydia Rhyman , Ibrahim A. Alswaidan , Veikko Uahengo , Radhakhrishna Somanah and Ponnadurai Ramasami
Abstract
This research investigates molecular parameters such as equilibrium structure, dipole moment, rotational constant, harmonic frequency, adiabatic electron affinity, atomisation energy, and ionisation potential of some identified diatomic molecules in interstellar/circumstellar medium. A theoretical understanding of the molecular properties of the investigated molecules is obtained using the popular B3LYP hybrid density functional with four basis sets: 6-311++G(2df,2pd), 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ. The computed data conform very well with available experimental and theoretical results. The accuracy of the B3LYP functional on the studied molecular systems are ±0.006 Å for the bond length, ±0.044 D for the dipole moment, ±0.854 GHz for the rotational constant, ±59 cm−1 for the harmonic frequency, ±2.03 kcal/mol for the electron affinity, ±4.74 kcal/mol for atomisation energy, and ±3.19 kcal/mol for ionisation potential.
Acknowledgements
The authors acknowledge the facilities from their respective universities. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for the research group project no. RGP VPP-207.
References
[1] J. M. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, Cambridge 2003.10.1017/CBO9780511814808Search in Google Scholar
[2] P. T. Snow and J. B. McCall, Annu. Rev. Astron. Astr. 44, 367 (2006).10.1146/annurev.astro.43.072103.150624Search in Google Scholar
[3] W. Klemperer, P. Natl. Acad. Sci. USA 103, 12232 (2006).10.1073/pnas.0605352103Search in Google Scholar PubMed PubMed Central
[4] P. Botchwina, Phys. Chem. Chem. Phys. 5, 3337 (2003).10.1039/b303753nSearch in Google Scholar
[5] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Germany 2001.10.1002/3527600043Search in Google Scholar
[6] J. C. Rienstra-Kiracofe, G. S. Tschumper, and H. F. Schaefer III, Chem. Rev. 102, 231 (2002).10.1021/cr990044uSearch in Google Scholar PubMed
[7] S. J. Blanksby, A. M. McAnoy, S. Dua, and J. H. Bowie, Mon. Not. R. Astron. Soc. 328, 89 (2001).10.1046/j.1365-8711.2001.04836.xSearch in Google Scholar
[8] K. C. Lau and C. Y. Ng, J. Chem. Phys. 122, 224310 (2005).10.1063/1.1926274Search in Google Scholar PubMed
[9] B. Larsson, R. Liseau, L. Pagani, P. Bergman, P. Bernath, et al., Astron. Astr. 466, 999 (2007).10.1051/0004-6361:20065500Search in Google Scholar
[10] D. A. Neufeld, P. Schilke, K. M. Menten, M. G. Wolfire, J. H. Black, et al., Astron. Astr. 454, L37 (2006).10.1051/0004-6361:200600015Search in Google Scholar
[11] C. M. Walmsley, R. Bachiller, G. Pineau des Forêts, and P. Schilke, Astrophys. J. 566, L109 (2002).10.1086/339694Search in Google Scholar
[12] D. H. Wooden, S. B. Charnley, and P. Ehrenfreund, Composition and Evolution of Interstellar Clouds, Comets II, University of Arizona Press, USA 2004.10.2307/j.ctv1v7zdq5.10Search in Google Scholar
[13] W. W. Duley, T. J. Millar, and D. A. Williams, Mon. Not. R. Astron. Soc. 192, 945 (1980).Search in Google Scholar
[14] I. Yamamura, K. Kawaguchi, and S. T. Ridgway, Astrophys. J. 528, L33 (2000).10.1086/312420Search in Google Scholar PubMed
[15] K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., New York 1979.10.1007/978-1-4757-0961-2Search in Google Scholar
[16] T. A. Dixon and R. C. Woods, Phys. Rev. Lett. 34, 61 (1975).10.1103/PhysRevLett.34.61Search in Google Scholar
[17] F. J. Lovas, Astrophys. J. 193, 265 (1974).10.1086/153157Search in Google Scholar
[18] S. A. Rice and W. Klemperer, J. Chem. Phys. 27, 573 (1957).10.1063/1.1743772Search in Google Scholar
[19] R. E. Honig, J. Chem. Phys. 22, 126 (1954).10.1063/1.1739819Search in Google Scholar
[20] G. Drechsler, U. Boesl, C. Bassmann, and E. W. Schlag, J. Chem. Phys. 107, 2284 (1997).10.1063/1.474622Search in Google Scholar
[21] S. M. Burnett, C. S. Feigerle, A. E. Stevens, and C. W. Lineberger, J. Phys. Chem. 86, 4486 (1982).10.1021/j100220a008Search in Google Scholar
[22] M. L. Polak, B. L. Fiala, W. C. Lineberger, and K. M. Ervin, J. Chem. Phys. 94, 6926 (1991).10.1063/1.460223Search in Google Scholar
[23] V. H. Dibeler, R. M. Reese, and J. L. Franklin, J. Am. Chem. Soc. 83, 1813 (1961).10.1021/ja01469a011Search in Google Scholar
[24] S. Smoes, C. E. Myers, and J. Drowart, Chem. Phys. Lett. 8, 10 (1971).10.1016/0009-2614(71)80562-6Search in Google Scholar
[25] G. Verhaegen, F. E. Stafford, and J. Drowart, J. Chem. Phys. 40, 1622 (1964).10.1063/1.1725370Search in Google Scholar
[26] H. Bloom and D. J. Williams, J. Chem. Phys. 75, 4636 (1981).10.1063/1.442579Search in Google Scholar
[27] C. E. Melton, J. Chem. Phys. 45, 4414 (1966).10.1063/1.1727520Search in Google Scholar
[28] D. J. Williams, Aust. J. Chem. 35, 1531 (1982).10.1071/CH9821531Search in Google Scholar
[29] H. Nakagawa, M. Asano, and K. Kubo, J. Nucl. Mater. 102, 292 (1981).10.1016/0022-3115(81)90496-7Search in Google Scholar
[30] V. L. Tal’roze, N. I. Butkovskaya, M. N. Larichev, I. O. Leipunskii, I. I. Morozov, et al., Adv. Mass Spectrom. 7, 693 (1978).Search in Google Scholar
[31] D. L. Hildenbrand, Chem. Phys. Lett. 34, 352 (1975).10.1016/0009-2614(75)85291-2Search in Google Scholar
[32] R-G. Wang, M. A. Dillon, and D. Spence, J. Chem. Phys. 80, 63 (1984).10.1063/1.446407Search in Google Scholar
[33] J. M. Dyke, A. Morris, and I. R. Trickle, J. Chem. Soc. Faraday Trans. 2. 73, 147 (1977).10.1039/f29777300147Search in Google Scholar
[34] D. K. Bulgin, J. M. Dyke, and A. Morris, J. Chem. Soc. Faraday Trans. 2. 73, 983 (1977).10.1039/F29777300983Search in Google Scholar
[35] M. C. R. Cockett, J. M. Dyke, A. Morris, and M. H. Z. Niavaran, J. Chem. Soc. Faraday Trans. 2. 85, 75 (1989).10.1039/F29898500075Search in Google Scholar
[36] G. Bieri, A. Schmelzer, L. Asbrink, and M. Jonsson, Chem. Phys. 49, 213 (1980).10.1016/0301-0104(80)85258-XSearch in Google Scholar
[37] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).10.1063/1.460205Search in Google Scholar
[38] S. Midda and A. K. Das, Eur. Phys. J. D, 27, 109 (2003).10.1140/epjd/e2003-00257-7Search in Google Scholar
[39] M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).10.1063/1.447079Search in Google Scholar
[40] T. Clark, J. Chandrasekhar, W. Spitznagel, and P. V. R. Schleyer, J. Comp. Chem. 4, 294 (1983).10.1002/jcc.540040303Search in Google Scholar
[41] P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).10.1016/0009-2614(92)85807-MSearch in Google Scholar
[42] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).10.1063/1.456153Search in Google Scholar
[43] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).10.1063/1.462569Search in Google Scholar
[44] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).10.1063/1.464303Search in Google Scholar
[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA, 2003.Search in Google Scholar
[46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016.Search in Google Scholar
[47] R. D. Nelson Jr., D. R. Lide, and A. A. Maryott, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, NSRDS-NBS10, Washington, 1967.10.6028/NBS.NSRDS.10Search in Google Scholar
[48] D. R. Lide, Jr., J. Chem. Phys. 42, 1013 (1965).10.1063/1.1696035Search in Google Scholar
[49] P. L. Clouser and W. Gordy, Phys. Rev. A, 134, 863 (1964).10.1103/PhysRev.134.A863Search in Google Scholar
[50] T. Amano, S. Saito, E. Hirota, and Y. Morino, J. Mol. Spectrosc. 32, 97 (1969).10.1016/0022-2852(69)90145-3Search in Google Scholar
[51] J. Raymonda and W. Klemperer, J. Chem. Phys. 55, 232 (1971).10.1063/1.1675513Search in Google Scholar
[52] J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, J. Chem. Phys. 52, 3458 (1970).10.1063/1.1673510Search in Google Scholar
[53] J. Hoeft, F. J. Lovas, E. Tiemann, and T. Törring, Z. Naturforsch. A 24, 1422 (1969).10.1515/zna-1969-0932Search in Google Scholar
[54] W. L. Meerts and A. Dymanus, Can. J. Phys. 53, 2123 (1975).10.1139/p75-261Search in Google Scholar
[55] R. C. Fortenberry, J. Phys. Chem. A 119, 9941 (2015).10.1021/acs.jpca.5b05056Search in Google Scholar
[56] M. Bogey, C. Demuynk, and J. L. Destombes, J. Chem. Phys. 79, 4704 (1983).10.1063/1.445611Search in Google Scholar
[57] T. Kröchertskothen, H. Knöckel, and E. Tiemann, Mol. Phys. 62, 1031 (1987).10.1080/00268978700102761Search in Google Scholar
[58] I. R. Marenin and H. R. Johnson, J. Quant. Spectrosc. RA 10, 305 (1970).10.1016/0022-4073(70)90097-XSearch in Google Scholar
[59] C. Yamada, F. Masaharu, and E. Hirota, J. Chem. Phys. 90, 3033 (1989).10.1063/1.455905Search in Google Scholar
[60] T. Shimanouchi, J. Phys. Chem. Ref. Data 1, 189 (1972).10.1063/1.3253098Search in Google Scholar
[61] J. Hoeft, E. Tiemann, and T. Torring, Z. Naturforsch. 27, 703 (1972).10.1515/zna-1972-0424Search in Google Scholar
[62] M. E. Jacox, J. Phys. Chem. Ref. Data, Monograph 3, 461 (1994).Search in Google Scholar
[63] K. M. A. Refaey and J. L. Franklin, Int. J. Mass Spectrom. Ion Phys. 20, 19 (1976).10.1016/0020-7381(76)80029-0Search in Google Scholar
[64] C. De Vreugd, R. W. Wijnaendts van Resandt, J. Los, and B. Smith, Chem. Phys. 42, 305 (1979).10.1016/0301-0104(79)80078-6Search in Google Scholar
[65] J. D. Watts and R. J. Bartlett, J. Chem. Phys. 101, 409 (1994).10.1063/1.468149Search in Google Scholar
[66] D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, Phys. Rev. A. 47, 4042 (1993).10.1103/PhysRevA.47.4042Search in Google Scholar
[67] J. M. Dyke, C. Kirby, A. Morris, B. W. J. Gravenor, R. Klein et al., Chem. Phys. 88, 289 (1984).10.1016/0301-0104(84)85286-6Search in Google Scholar
[68] D. L. Hildenbrand, J. Chem. Phys. 66, 3526 (1977).10.1063/1.434439Search in Google Scholar
[69] C. J. Reid, J. A. Ballantine, S. R. Andrews, and F. M. Harris, Chem. Phys. 190, 113 (1995).10.1016/0301-0104(94)00335-8Search in Google Scholar
[70] G. Herzberg and J. W. C. Johns, Ap. J. 158, 399 (1969).10.1086/150202Search in Google Scholar
[71] P. Erman, A. Karawajczyk, E. Rachlew-Kallne, C. Stromholm, J. Larsson, et al., Chem. Phys. Lett. 215, 173 (1993).10.1016/0009-2614(93)89283-NSearch in Google Scholar
[72] G. Reiser, W. Habenicht, K. Muller-Dethlefs, and E. W. Schlag, Chem. Phys. Lett. 152, 119 (1988).10.1016/0009-2614(88)87340-8Search in Google Scholar
[73] R. T. Wiedmann, R. G. Tonkyn, M. G. White, K. Wang, and V. McKoy, J. Chem. Phys. 97, 768 (1992).10.1063/1.463179Search in Google Scholar
[74] K. Norwood and C. Y. Ng, Chem. Phys. Lett. 156, 145 (1989).10.1016/S0009-2614(89)87110-6Search in Google Scholar
[75] J. B. Milan, W. J. Buma, and C. A. DeLange, J. Chem. Phys. 104, 521 (1996).10.1063/1.470848Search in Google Scholar
[76] R. G. Tonkyn, J. W. Winniczek, and M. G. White, Chem. Phys. Lett. 164, 137 (1989).10.1016/0009-2614(89)85005-5Search in Google Scholar
[77] J. Berkowitz, J. P. Greene, H. Cho, and B. Ruscic, J. Chem. Phys. 86, 1235 (1987).10.1063/1.452213Search in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zna-2017-0176).
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0
Articles in the same Issue
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0