Abstract
The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.
Acknowledgments
M. Jamil acknowledges the late Prof. M. Salimullah for fruitful discussions during the last days of his life. Z. Mir and M. Asif thank HEC Pakistan for partial support (No. 2323/NRPU).
References
[1] K.-Z. Zhang and J.-K. Xue, Phys. Plasmas 17, 032113 (2010).10.1063/1.3372844Search in Google Scholar
[2] Y. D. Jung, Phys. Plasmas 8, 3842 (2001).10.1063/1.1386430Search in Google Scholar
[3] D. Kremp, Th. Bornath, M. Bonitz, and M. Schlanhes, Phys. Rev. E 60, 4725 (1999).10.1103/PhysRevE.60.4725Search in Google Scholar
[4] M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, Phys. Plasmas 16, 014502 (2009).10.1063/1.3070664Search in Google Scholar
[5] M. Salimullah, M. Jamil, I. Zeba, Ch. Uzma, and H. A. Shah, Phys. Plasmas 16, 034503 (2009).10.1063/1.3086861Search in Google Scholar
[6] M. Salimullah, I. Zeba, Ch. Uzma, and M. Jamil, Phys. Plasmas 16, 1 (2009).10.1063/1.3070664Search in Google Scholar
[7] A. Hussain, I. Zeba, M. Salimullah, G. Murtaza, and M. Jamil, Phys. Plasmas 17, 054504 (2010).10.1063/1.3420277Search in Google Scholar
[8] I. Zeba, Ch. Uzma, M. Jamil, M. Salimullah, and P. K. Shukla, Phys. Plasmas 17, 032105 (2010).10.1063/1.3334376Search in Google Scholar
[9] M. Jamil, M. Shahid, W. Ali, M. Salimullah, H. A. Shah, et al., Phys. Plasmas 18, 063705 (2011).10.1063/1.3595235Search in Google Scholar
[10] G. Brodin, M. Marklund, and G. Manfredi, Phys. Rev. Lett. 100, 175001 (2008).10.1103/PhysRevLett.100.175001Search in Google Scholar PubMed
[11] A. K. Harding and D. Lai, Rep. Prog. Phys. 69, 263 (2006).10.1088/0034-4885/69/9/R03Search in Google Scholar
[12] S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, et al., Phys. Rev. Lett. 98, 065002 (2007).10.1103/PhysRevLett.98.065002Search in Google Scholar
[13] A. Rasheed, G. Murtaza, and N. L. Tsintsadze, Phys. Rev. E 82, 016403 (2010).10.1103/PhysRevE.82.016403Search in Google Scholar
[14] C. L. Gardner and C. Ringhofer, Phys. Rev. E 53, 157 (1996).10.1103/PhysRevE.53.157Search in Google Scholar
[15] G. Manfredi, Fields Inst. Commun. 46, 263 (2005).10.1090/fic/046/10Search in Google Scholar
[16] P. K. Shukla and B. Eliasson, Phys. Rev. Lett. 96, 245001 (2006).10.1103/PhysRevLett.96.245001Search in Google Scholar
[17] B. Alder, S. Fernbach, and M. Rothenberg, Methods in Computational Physics, vol. 8, Academic Press, New York 1968.Search in Google Scholar
[18] L. Hedin and B. I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971).10.1088/0022-3719/4/14/022Search in Google Scholar
[19] W. A. Harrison, Pseudopotentials in the Theory of Metals, W. A. Benjamin, New York 1966.Search in Google Scholar
[20] V. Heine and D. Weaire, in: Solid State Physics, vol. 24 (Eds. H. Ehrenreich, F. Seitz, and D. Turnbull), Academic Press, New York 1970, p. 249.10.1016/S0081-1947(08)60071-5Search in Google Scholar
[21] R. Ekman, J. Zamanian, and G. Brodin, Phys. Rev. E 92, 013104 (2015).10.1103/PhysRevE.92.013104Search in Google Scholar PubMed
[22] O. Gritsenko and E. J. Baerends, J. Chem. Phys. 120, 8364 (2004).10.1063/1.1698561Search in Google Scholar PubMed
[23] K. Capelle, Braz. J. Phys. 36, 1318 (2006).10.1590/S0103-97332006000700035Search in Google Scholar
[24] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar
[25] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.140.A1133Search in Google Scholar
[26] I. Zeba, M. E. Yahia, P. K. Shukla, and W. M. Moslem, Phys. Lett. A 376, 2309 (2012).10.1016/j.physleta.2012.05.049Search in Google Scholar
[27] W. M. Moslem, I. Zeba, and P. K. Shukla, Appl. Phys. Lett. 101, 032106 (2012).10.1063/1.4736726Search in Google Scholar
[28] F. Stern, S. D. Sarma, Phys. Rev. B, 30, 840 (1984).10.1103/PhysRevB.30.840Search in Google Scholar
[29] L. Brey, J. Dempsey, N. F. Johnson, and B. I. Halperin, Phys. Rev. B, 42, 1240 (1990).10.1103/PhysRevB.42.1240Search in Google Scholar
[30] N. Crouseilles, P.-A. Hervieux, and G. Manfredi, Phys. Rev. B 78, 155412 (2008).10.1103/PhysRevB.78.155412Search in Google Scholar
[31] N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).10.1016/0032-0633(90)90147-ISearch in Google Scholar
[32] P. K. Shukla and V. P. Silin, Phys. Scr. 45, 508 (1992).10.1088/0031-8949/45/5/015Search in Google Scholar
[33] M. Salimullah and A. Sen, Phys. Lett. A 163, 82 (1992).10.1016/0375-9601(92)90165-ISearch in Google Scholar
[34] M. Salimullah, M. H. A. Hassan, and A. Sen, Phys. Rev. A 45, 5929 (1992).10.1103/PhysRevA.45.5929Search in Google Scholar
[35] M. Jamil, M. Shahid, I. Zeba, M. Salimullah, H. A. Shah, et al., Phys. Plasmas 19, 023705 (2012).10.1063/1.3684641Search in Google Scholar
[36] S. Vincena, W. Gekelman, and J. Maggs, Phys. Plasmas 8, 3884 (2011).10.1063/1.1389092Search in Google Scholar
[37] W. Gekelman, S. Vincena, B. VanCompernolle, G. J. Morales, J. E. Maggs, et al., Phys. Plasmas 18, 055501 (2011).10.1063/1.3592210Search in Google Scholar
[38] C. K. Goertz, Rev. Geophys. 27, 271, (1989).10.1029/RG027i002p00271Search in Google Scholar
[39] T. G. Northrop, Phys. Scr. 45, 475 (1992).10.1088/0031-8949/45/5/011Search in Google Scholar
[40] P. K. Shukla and H. U. Rahman, Planet. Space Sci. 44, 469 (1996).10.1016/0032-0633(95)00132-8Search in Google Scholar
[41] R. V. Reddy, G. S. Lakhina, F. Verheest, and P. Meuris, Planet. Space Sci. 44, 129 (1996).10.1016/0032-0633(95)00083-6Search in Google Scholar
[42] M. Salimullah and M. Rosenberg, Phys. Lett. A 254, 347 (1999).10.1016/S0375-9601(99)00138-3Search in Google Scholar
[43] M. Salimullah, M. M. Rahman, I. Zeba, H. A. Shah, G. Murtaza, et al., Phys. Plasmas 13, 122102 (2006).10.1063/1.2400846Search in Google Scholar
[44] M. Shahid and G. Murtaza, Phys. Plasmas 20, 082124 (2013).10.1063/1.4818158Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0
Articles in the same Issue
- Frontmatter
- Dyons and Certain Symmetries in Maxwell’s Equations
- Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
- Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis
- Asymptotic Analysis of a Nonlinear Problem on Domain Boundaries in Convection Patterns by Homotopy Renormalization Method
- The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
- Structural, Spectroscopic, and Energetic Parameters of Diatomic Molecules Having Astrophysical Importance
- The Homotopy Perturbation Method for Accurate Orbits of the Planets in the Solar System: The Elliptical Kepler Equation
- Electron-Nuclear Dynamics on Amplitude and Frequency Modulation of Molecular High-Order Harmonic Generation from H2+ and its Isotopes
- Interaction Solutions for Lump-line Solitons and Lump-kink Waves of the Dimensionally Reduced Generalised KP Equation
- Discrete Solitons and Bäcklund Transformation for the Coupled Ablowitz–Ladik Equations
- Rapid Communication
- Nonclassical t-Dependent Energy Integral of q″+aq′+b(t)q+c(t)qn=0