Startseite Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach

  • F. Ayedun , P.O. Adebambo , B.I. Adetunji , V.C. Ozebo , J.A. Oguntuase und G.A. Adebayo EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2017

Abstract

Tetragonal phase of Zrx Ti1−x O2 ternary alloys is studied using generalized gradient approximation (GGA) projector augmented wave-based density functional theory (DFT). The calculations are used to characterize alloying effects of Zr substituting Ti in tutile TiO2. Band gap calculations show a direct band gap at x=0, while at other concentrations, an indirect band gap is observed. Electronic structure analysis shows that Zr alloying is capable of lowering the band gap transition of Zrx Ti1−x O2 at x=1 by the presence of an impurity state of transition metal Zr 5S2 on the upper edge of the valence band. The addition of Zr also results in the corresponding increment in lattice constant with the material becoming more ductile and malleable.

Acknowledgments

F.A. appreciates the very useful discussions with Prof. Ari Paavo Seitsonen at the early stage of the study.

References

[1] N. V. Sobolev and E. S. Yefimova, Int. Geol. Rev. 42, 78 (2000).10.1080/00206810009465120Suche in Google Scholar

[2] G. L. Luvizotto, T. Zack, S. Triebold, and H. von Eynatten, Mineral. Petrol. 97, 233 (2009).10.1007/s00710-009-0092-zSuche in Google Scholar

[3] L. S. Dubrovisky, N. A. Dubrovinskaia, V. Swamy, J. Musat, N. M. Harrison, et al., Nature 410, 653 (2001).10.1038/35070650Suche in Google Scholar

[4] P. Y. Simons and F. Dachille, Acta Crystallogr. 23, 334 (1967).10.1107/S0365110X67002713Suche in Google Scholar

[5] D. A. H. Hanaor, M. H. N. Assadi, S. Li, A. Yu, and C. C. Sorell, Comput. Mech. 50, 185 (2012).10.1007/s00466-012-0728-4Suche in Google Scholar

[6] A. Korneliussen, S. R. McLiman, A. Braathen, M. Erambert, O. Lutro, et al., Norges Geologiske Underokelse Bull. 436, 39 (2000).Suche in Google Scholar

[7] Z. Y. Chen, D. H. Wang, Y. C. Chen, J. Xu, J. J. Yu, et al., Earth Sci. J. China Univ. Geosci. 31, 533 (2006).Suche in Google Scholar

[8] Z. M. Zhang, J. G. Liou, X. D. Zhao, and C. Shi, J. Metamorphic Geol. 24, 727 (2006).10.1111/j.1525-1314.2006.00665.xSuche in Google Scholar

[9] A. Stwertka, A Guide to the Elements, Oxford University Press, Oxford, UK, p. 117. ISBN 0-19-508083-1.Suche in Google Scholar

[10] P. Papaspyridakos and L. Kunal, J. Prosthet. Dent. 100, 165 (2008).10.1016/S0022-3913(08)00110-8Suche in Google Scholar

[11] L. D. Finkelstein, E. Z. Kurmaev, M. A. Korotin, A. Moewes, B. Schneider, et al., Phys. Rev. B. 60, 2212 (1999).10.1103/PhysRevB.60.2212Suche in Google Scholar

[12] B. Poumellec, P. J. Durham, and G. Y. Guo, J. Phys. Condens. Matter 3, 8195 (1991).10.1088/0953-8984/3/42/014Suche in Google Scholar

[13] J. Pascual, J. Camassel, and H. Mahieu, Phys. Rev. B. 18, 5606 (1978).10.1103/PhysRevB.18.5606Suche in Google Scholar

[14] M. M. Islam, T. Bredow, and A. Gerson, Phys. Rev. B 76, 045217 (2007).10.1103/PhysRevB.76.045217Suche in Google Scholar

[15] F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, J. Chem. Phys. 126, 154703 (2007).10.1063/1.2717168Suche in Google Scholar PubMed

[16] S. Mo and W. Y. Ching, Phys. Rev. B 51, 13023 (1992).10.1103/PhysRevB.51.13023Suche in Google Scholar

[17] J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed

[18] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys. Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502Suche in Google Scholar PubMed

[19] H. Theo, International Tables for Crystallography, Volume A, 5th ed., Space-Group Symmetry 2005, p. 982. ISBN: 978-0-470-68908-0.Suche in Google Scholar

[20] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Suche in Google Scholar

[21] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987).10.1021/ja00246a021Suche in Google Scholar

[22] K. M. Glassford and J. R. Chelikowsky, Phys. Rev. B. 46, 1284 (1992).10.1103/PhysRevB.46.1284Suche in Google Scholar PubMed

[23] Inorganic Crystal Structure Database (ICSD), NIST Release 2010/1.Suche in Google Scholar

[24] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).10.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central

[25] H. Perron, C. Domain, J. Roques, R. Durot, E. Simoni, et al., Theor. Chem. Acc. 117, 4 (2007).10.1007/s00214-006-0189-ySuche in Google Scholar

[26] J. Zhu, J. X. Yu, Y. J. Wang, X. R. Chen, and F. Q. Jing, Chinese Phys. B 17, 6 (2008).Suche in Google Scholar

[27] L. Gerward and J. S. Olsen, J. Appl. Crystallogr. 30, 259 (1997).10.1107/S0021889896011454Suche in Google Scholar

[28] B. Kralik, E. K. Chang, and S. G. Louie, Phys. Rev. B 57, 7027 (1998).10.1103/PhysRevB.57.7027Suche in Google Scholar

[29] J. C. Garcia, L. M. R. Scolfaro, A. T. Lino, V. N. Freire, G. A. Farias, et al., J. Appl. Phys. 100, 104103 (2006).10.1063/1.2386967Suche in Google Scholar

[30] E. V. Stefanovich, A. Shluger, and C. R. Catlow, Phys. Rev. B 49, 11560 (1994).10.1103/PhysRevB.49.11560Suche in Google Scholar

[31] N. Igawa, Y. Ishin, T Nagasaki, Y. Morii, S. Funahashi, et al., J. Am. Ceram. Soc. 76, 2673 (1993).10.1111/j.1151-2916.1993.tb03999.xSuche in Google Scholar

[32] R. Terki, G. Bertrand, H. Aourag, and C. Coddet, Mater. Sci. Semicond. Process 9, 1006 (2000).10.1016/j.mssp.2006.10.033Suche in Google Scholar

[33] M. Fukuhara and I. Yamauchi, J. Mater. Sci. 28, 4681 (1993).10.1007/BF00414258Suche in Google Scholar

[34] P. Bouvier, E. Djurado, E. Lucazeau, and L. Bihan, Phys. Rev. B. 62, 8731 (2000).10.1103/PhysRevB.62.8731Suche in Google Scholar

[35] L. Vegard, Z. Phys. 5, 17 (1921).10.1007/BF01349680Suche in Google Scholar

[36] F. El Haj Hassan and H. Akbarzadeh, Mater. Sci. Eng. B 21, 170 (2005).10.1016/j.mseb.2005.03.019Suche in Google Scholar

[37] Z. Dridi, B. Bouhafs, and P. Ruterana, Comput. Matter 33, 136 (2005).10.1016/j.commatsci.2004.12.027Suche in Google Scholar

[38] S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).10.1103/PhysRevB.63.165212Suche in Google Scholar

[39] G. Mattioli, F. Filippone, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 78, 241201 (2008).10.1103/PhysRevB.78.241201Suche in Google Scholar

[40] C. E. Ekuma and D. Bagayoko, Japan J. Appl. Phys. 50, 101103 (2011).10.1143/JJAP.50.101103Suche in Google Scholar

[41] D. C. Cronemeyer, Phys. Rev. B 87, 876 (1952).10.1103/PhysRev.87.876Suche in Google Scholar

[42] H. Fox, K. E. Newman, W. F. Schneider, and S. A. Corcelli, J. Chem. Theory Comput. 6, 499 (2010).10.1021/ct900665aSuche in Google Scholar PubMed

[43] D. Vogtenhuber, R. Podloucky, A. Neckel, S. G. Steinemann, and A. J. Freeman, Phys. Rev. B 49, 2099 (1994).10.1103/PhysRevB.49.2099Suche in Google Scholar PubMed

[44] G. Rocker, J. A. Schaefer, and W. Gopel, Phys. Rev. B 30, 3704 (1984).10.1103/PhysRevB.30.3704Suche in Google Scholar

[45] A. Amtout and R. Leoneli, Phys. Rev. B 51, 6842 (1995).10.1103/PhysRevB.51.6842Suche in Google Scholar

[46] S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski, et al., J. Appl. Phys. 96, 7485 (2004).10.1063/1.1803107Suche in Google Scholar

[47] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, et al., Appl. Phys. Lett. 81, 376 (2002).10.1063/1.1492024Suche in Google Scholar

Received: 2017-2-3
Accepted: 2017-4-23
Published Online: 2017-5-17
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2017-0036/html
Button zum nach oben scrollen