Startseite Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems

  • V.R. Kulli , Branden Stone EMAIL logo , Shaohui Wang und Bing Wei
Veröffentlicht/Copyright: 18. Mai 2017

Abstract

Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Vol. 244 of Graduate Texts in Mathematics, Springer, New York 2008.10.1007/978-1-84628-970-5Suche in Google Scholar

[2] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947).10.1021/ja01193a005Suche in Google Scholar PubMed

[3] P. W. Fowler, G. Caporossi, and P. Hansen, J. Phys. Chem. A 105, 6232 (2001).10.1021/jp0104379Suche in Google Scholar

[4] A. R. Matamala and E. Estrada, J. Phys. Chem. A 109, 9890 (2005).10.1021/jp053408xSuche in Google Scholar PubMed

[5] M. Randić, T. Pisanski, M. Novič, and D. Plavšić, J. Comput. Chem. 31, 1832 (2010).Suche in Google Scholar

[6] F. Yang, Z.-D. Wang, and Y.-P. Huang, J. Comp. Chem. 25, 881 (2004).10.1002/jcc.20016Suche in Google Scholar PubMed

[7] I. Gutman, B. Ruščić, N. Trinajstić, and C. F. Wilcox, J. Chem. Phys. 62, 3399 (1975).10.1063/1.430994Suche in Google Scholar

[8] H. Narumi and M. Katayama, Mem. Fac. Eng. Hokkaido Univ. 16, 209 (1984).Suche in Google Scholar

[9] I. Gutman, Bull. Int. Math. Virtual Inst. 1, 13 (2011).Suche in Google Scholar

[10] R. Todeschini, D. Ballabio, and V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, in: Novel Molecular Structure Descriptors – Theory and Applications I, Vol. 8 of Mathematical Chemistry Monographs, University of Kragujevac and Faculty of Science Kragujevac, 2010, pp. 73–100.Suche in Google Scholar

[11] R. Todeschini and V. Consonni, MATCH Commun. Math. Comput. Chem. 64, 359 (2010).Suche in Google Scholar

[12] S. Wang and B. Wei, Discrete Appl. Math. 180, 168 (2015).10.1016/j.dam.2014.08.017Suche in Google Scholar

[13] M. Eliasi, A. Iranmanesh, and I. Gutman, MATCH Commun. Math. Comput. Chem. 68, 217 (2012).Suche in Google Scholar

[14] V. R. Kulli, Int. Res. J. Pure Alg. 6, 342 (2016).Suche in Google Scholar

[15] S. Ling-Ling, W. Zhi-Ning, and Z. Li-Qiang, Chin. J. Chem. 23, 245 (2005).10.1002/cjoc.200590245Suche in Google Scholar

Received: 2017-3-22
Accepted: 2017-4-23
Published Online: 2017-5-18
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2017-0104/html
Button zum nach oben scrollen