Abstract
A new perturbation method, multiple scales Lindstedt–Poincare (MSLP) is applied to jerk equations with cubic nonlinearities. Three different jerk equations are investigated. Approximate analytical solutions and periods are obtained using MSLP method. Both approximate analytical solutions and periods are contrasted with numerical and exact results. For the case of strong nonlinearities, obtained results are in good agreement with numerical and exact ones.
References
[1] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley and Sons, New York 1979.Search in Google Scholar
[2] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.Search in Google Scholar
[3] R. E. Mickens, Oscillations in Planar Dynamic Systems, Word Scientific, Singapore 1996.10.1142/2778Search in Google Scholar
[4] Y. K. Cheung, S. H. Chen, and S. L. Lau, Int. J. Nonlinear Mech. 26, 367 (1991).10.1016/0020-7462(91)90066-3Search in Google Scholar
[5] Y. Y. Chen, L. W. Yan, R. K. L. Su, and B. Liu, J. Vib. Control. (2015). DOI: https://doi.org/10.1177/1077546315573915.10.1177/1077546315573915Search in Google Scholar
[6] Z. Li and J. Tang, Nonlinear Dyn. 84, 1201 (2016)10.1007/s11071-015-2563-6Search in Google Scholar
[7] Y. Y. Chen, S. H. Chen, and W. Zhao, Commun. Nonlinear Sci. Numer. Simulat. 48, 123 (2017).10.1016/j.cnsns.2016.12.010Search in Google Scholar
[8] M. Pakdemirli, M. M. F. Karahan, and H. Boyacı, Math. Comput. Appl. 14, 31 (2009).10.3390/mca14010031Search in Google Scholar
[9] M. Pakdemirli and M. M. F. Karahan, Math. Methods Appl. Sci. 33, 704 (2010).10.1002/mma.1187Search in Google Scholar
[10] M. Pakdemirli, M. M. F. Karahan, and H. Boyacı, Math. Comput. Appl. 16, 879 (2011).10.3390/mca16040879Search in Google Scholar
[11] M. Pakdemirli, Z. Naturforsch. 70, 829 (2015).10.1515/zna-2015-0312Search in Google Scholar
[12] M. Pakdemirli and G. Sari, Math. Comput. Appl. 20, 137 (2015).10.19029/mca-2015-012Search in Google Scholar
[13] M. Pakdemirli and G. Sari, Comm. Num. Anal. 2015, 82 (2015).10.5899/2015/cna-00230Search in Google Scholar
[14] M. M. F. Karahan and M. Pakdemirli, Z. Naturforsch. 72, 59 (2017).10.1515/zna-2016-0263Search in Google Scholar
[15] H. Hu and Z. G. Xiong, J. Sound Vib. 278, 437 (2004).10.1016/j.jsv.2003.12.007Search in Google Scholar
[16] H. Hu, J. Sound Vib. 269, 409 (2004).10.1016/S0022-460X(03)00318-3Search in Google Scholar
[17] H. P. W. Gottlieb, J. Sound Vib. 271, 671 (2004).10.1016/S0022-460X(03)00299-2Search in Google Scholar
[18] B. S. Wu, C. W. Lim, and W. P. Sun, Phys. Lett. A. 354, 95 (2006).10.1016/j.physleta.2006.01.020Search in Google Scholar
[19] H. Hu, Phys. Lett. A. 372, 4205 (2008).10.1016/j.physleta.2008.03.027Search in Google Scholar
[20] H. Hu, M. Y. Zheng, and Y. J. Guo, Acta Mech. 209, 269 (2010).10.1007/s00707-009-0179-ySearch in Google Scholar
[21] A. Y. T. Leung and Z. Guo, Int. J. Nonlinear Mech. 46, 898 (2011).10.1016/j.ijnonlinmec.2011.03.018Search in Google Scholar
[22] X. Ma, L. Wei, and Z. Guo, J. Sound Vib. 314, 217 (2008).10.1016/j.jsv.2008.01.033Search in Google Scholar
[23] J. I. Ramos, Appl. Math. Comput. 215, 4304 (2010).10.1016/j.amc.2009.12.057Search in Google Scholar
[24] J. I. Ramos, Nonlinear Anal. Real. 11, 1613 (2010).10.1016/j.nonrwa.2009.03.023Search in Google Scholar
[25] S-D. Feng and L-Q. Chen, Chinese J. Phys. 26, 124501-1 (2009).10.1088/0256-307X/26/12/124501Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments
- Research Articles
- Mechanical, Dynamical and Thermodynamic Properties of Al-3wt%Mg from First Principles
- Gas Bubbles and Slugs Crossover in Air–Water Two-phase Flow by Multifractals
- Feinberg-Horodecki Equation with Pöschl-Teller Potential: Space-like Coherent States
- Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations
- On Topological Indices of Certain Dendrimer Structures
- Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach
- Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
- Effect of Gravomagnetism on the Trajectory of Light Ray
- Rapid Communication
- Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
Articles in the same Issue
- Frontmatter
- Review Article
- Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments
- Research Articles
- Mechanical, Dynamical and Thermodynamic Properties of Al-3wt%Mg from First Principles
- Gas Bubbles and Slugs Crossover in Air–Water Two-phase Flow by Multifractals
- Feinberg-Horodecki Equation with Pöschl-Teller Potential: Space-like Coherent States
- Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations
- On Topological Indices of Certain Dendrimer Structures
- Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach
- Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
- Effect of Gravomagnetism on the Trajectory of Light Ray
- Rapid Communication
- Maximum on the Electrical Conductivity Polytherm of Molten TeCl4