Home Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations
Article
Licensed
Unlicensed Requires Authentication

Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations

  • M.M. Fatih Karahan EMAIL logo
Published/Copyright: May 8, 2017

Abstract

A new perturbation method, multiple scales Lindstedt–Poincare (MSLP) is applied to jerk equations with cubic nonlinearities. Three different jerk equations are investigated. Approximate analytical solutions and periods are obtained using MSLP method. Both approximate analytical solutions and periods are contrasted with numerical and exact results. For the case of strong nonlinearities, obtained results are in good agreement with numerical and exact ones.

References

[1] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley and Sons, New York 1979.Search in Google Scholar

[2] A. H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.Search in Google Scholar

[3] R. E. Mickens, Oscillations in Planar Dynamic Systems, Word Scientific, Singapore 1996.10.1142/2778Search in Google Scholar

[4] Y. K. Cheung, S. H. Chen, and S. L. Lau, Int. J. Nonlinear Mech. 26, 367 (1991).10.1016/0020-7462(91)90066-3Search in Google Scholar

[5] Y. Y. Chen, L. W. Yan, R. K. L. Su, and B. Liu, J. Vib. Control. (2015). DOI: https://doi.org/10.1177/1077546315573915.10.1177/1077546315573915Search in Google Scholar

[6] Z. Li and J. Tang, Nonlinear Dyn. 84, 1201 (2016)10.1007/s11071-015-2563-6Search in Google Scholar

[7] Y. Y. Chen, S. H. Chen, and W. Zhao, Commun. Nonlinear Sci. Numer. Simulat. 48, 123 (2017).10.1016/j.cnsns.2016.12.010Search in Google Scholar

[8] M. Pakdemirli, M. M. F. Karahan, and H. Boyacı, Math. Comput. Appl. 14, 31 (2009).10.3390/mca14010031Search in Google Scholar

[9] M. Pakdemirli and M. M. F. Karahan, Math. Methods Appl. Sci. 33, 704 (2010).10.1002/mma.1187Search in Google Scholar

[10] M. Pakdemirli, M. M. F. Karahan, and H. Boyacı, Math. Comput. Appl. 16, 879 (2011).10.3390/mca16040879Search in Google Scholar

[11] M. Pakdemirli, Z. Naturforsch. 70, 829 (2015).10.1515/zna-2015-0312Search in Google Scholar

[12] M. Pakdemirli and G. Sari, Math. Comput. Appl. 20, 137 (2015).10.19029/mca-2015-012Search in Google Scholar

[13] M. Pakdemirli and G. Sari, Comm. Num. Anal. 2015, 82 (2015).10.5899/2015/cna-00230Search in Google Scholar

[14] M. M. F. Karahan and M. Pakdemirli, Z. Naturforsch. 72, 59 (2017).10.1515/zna-2016-0263Search in Google Scholar

[15] H. Hu and Z. G. Xiong, J. Sound Vib. 278, 437 (2004).10.1016/j.jsv.2003.12.007Search in Google Scholar

[16] H. Hu, J. Sound Vib. 269, 409 (2004).10.1016/S0022-460X(03)00318-3Search in Google Scholar

[17] H. P. W. Gottlieb, J. Sound Vib. 271, 671 (2004).10.1016/S0022-460X(03)00299-2Search in Google Scholar

[18] B. S. Wu, C. W. Lim, and W. P. Sun, Phys. Lett. A. 354, 95 (2006).10.1016/j.physleta.2006.01.020Search in Google Scholar

[19] H. Hu, Phys. Lett. A. 372, 4205 (2008).10.1016/j.physleta.2008.03.027Search in Google Scholar

[20] H. Hu, M. Y. Zheng, and Y. J. Guo, Acta Mech. 209, 269 (2010).10.1007/s00707-009-0179-ySearch in Google Scholar

[21] A. Y. T. Leung and Z. Guo, Int. J. Nonlinear Mech. 46, 898 (2011).10.1016/j.ijnonlinmec.2011.03.018Search in Google Scholar

[22] X. Ma, L. Wei, and Z. Guo, J. Sound Vib. 314, 217 (2008).10.1016/j.jsv.2008.01.033Search in Google Scholar

[23] J. I. Ramos, Appl. Math. Comput. 215, 4304 (2010).10.1016/j.amc.2009.12.057Search in Google Scholar

[24] J. I. Ramos, Nonlinear Anal. Real. 11, 1613 (2010).10.1016/j.nonrwa.2009.03.023Search in Google Scholar

[25] S-D. Feng and L-Q. Chen, Chinese J. Phys. 26, 124501-1 (2009).10.1088/0256-307X/26/12/124501Search in Google Scholar

Received: 2016-12-30
Accepted: 2017-4-6
Published Online: 2017-5-8
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0502/html
Scroll to top button