Abstract
Tetragonal phase of Zrx Ti1−x O2 ternary alloys is studied using generalized gradient approximation (GGA) projector augmented wave-based density functional theory (DFT). The calculations are used to characterize alloying effects of Zr substituting Ti in tutile TiO2. Band gap calculations show a direct band gap at x=0, while at other concentrations, an indirect band gap is observed. Electronic structure analysis shows that Zr alloying is capable of lowering the band gap transition of Zrx Ti1−x O2 at x=1 by the presence of an impurity state of transition metal Zr 5S2 on the upper edge of the valence band. The addition of Zr also results in the corresponding increment in lattice constant with the material becoming more ductile and malleable.
Acknowledgments
F.A. appreciates the very useful discussions with Prof. Ari Paavo Seitsonen at the early stage of the study.
References
[1] N. V. Sobolev and E. S. Yefimova, Int. Geol. Rev. 42, 78 (2000).10.1080/00206810009465120Search in Google Scholar
[2] G. L. Luvizotto, T. Zack, S. Triebold, and H. von Eynatten, Mineral. Petrol. 97, 233 (2009).10.1007/s00710-009-0092-zSearch in Google Scholar
[3] L. S. Dubrovisky, N. A. Dubrovinskaia, V. Swamy, J. Musat, N. M. Harrison, et al., Nature 410, 653 (2001).10.1038/35070650Search in Google Scholar
[4] P. Y. Simons and F. Dachille, Acta Crystallogr. 23, 334 (1967).10.1107/S0365110X67002713Search in Google Scholar
[5] D. A. H. Hanaor, M. H. N. Assadi, S. Li, A. Yu, and C. C. Sorell, Comput. Mech. 50, 185 (2012).10.1007/s00466-012-0728-4Search in Google Scholar
[6] A. Korneliussen, S. R. McLiman, A. Braathen, M. Erambert, O. Lutro, et al., Norges Geologiske Underokelse Bull. 436, 39 (2000).Search in Google Scholar
[7] Z. Y. Chen, D. H. Wang, Y. C. Chen, J. Xu, J. J. Yu, et al., Earth Sci. J. China Univ. Geosci. 31, 533 (2006).Search in Google Scholar
[8] Z. M. Zhang, J. G. Liou, X. D. Zhao, and C. Shi, J. Metamorphic Geol. 24, 727 (2006).10.1111/j.1525-1314.2006.00665.xSearch in Google Scholar
[9] A. Stwertka, A Guide to the Elements, Oxford University Press, Oxford, UK, p. 117. ISBN 0-19-508083-1.Search in Google Scholar
[10] P. Papaspyridakos and L. Kunal, J. Prosthet. Dent. 100, 165 (2008).10.1016/S0022-3913(08)00110-8Search in Google Scholar
[11] L. D. Finkelstein, E. Z. Kurmaev, M. A. Korotin, A. Moewes, B. Schneider, et al., Phys. Rev. B. 60, 2212 (1999).10.1103/PhysRevB.60.2212Search in Google Scholar
[12] B. Poumellec, P. J. Durham, and G. Y. Guo, J. Phys. Condens. Matter 3, 8195 (1991).10.1088/0953-8984/3/42/014Search in Google Scholar
[13] J. Pascual, J. Camassel, and H. Mahieu, Phys. Rev. B. 18, 5606 (1978).10.1103/PhysRevB.18.5606Search in Google Scholar
[14] M. M. Islam, T. Bredow, and A. Gerson, Phys. Rev. B 76, 045217 (2007).10.1103/PhysRevB.76.045217Search in Google Scholar
[15] F. Labat, P. Baranek, C. Domain, C. Minot, and C. Adamo, J. Chem. Phys. 126, 154703 (2007).10.1063/1.2717168Search in Google Scholar PubMed
[16] S. Mo and W. Y. Ching, Phys. Rev. B 51, 13023 (1992).10.1103/PhysRevB.51.13023Search in Google Scholar
[17] J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed
[18] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys. Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502Search in Google Scholar PubMed
[19] H. Theo, International Tables for Crystallography, Volume A, 5th ed., Space-Group Symmetry 2005, p. 982. ISBN: 978-0-470-68908-0.Search in Google Scholar
[20] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Search in Google Scholar
[21] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987).10.1021/ja00246a021Search in Google Scholar
[22] K. M. Glassford and J. R. Chelikowsky, Phys. Rev. B. 46, 1284 (1992).10.1103/PhysRevB.46.1284Search in Google Scholar PubMed
[23] Inorganic Crystal Structure Database (ICSD), NIST Release 2010/1.Search in Google Scholar
[24] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).10.1073/pnas.30.9.244Search in Google Scholar PubMed PubMed Central
[25] H. Perron, C. Domain, J. Roques, R. Durot, E. Simoni, et al., Theor. Chem. Acc. 117, 4 (2007).10.1007/s00214-006-0189-ySearch in Google Scholar
[26] J. Zhu, J. X. Yu, Y. J. Wang, X. R. Chen, and F. Q. Jing, Chinese Phys. B 17, 6 (2008).Search in Google Scholar
[27] L. Gerward and J. S. Olsen, J. Appl. Crystallogr. 30, 259 (1997).10.1107/S0021889896011454Search in Google Scholar
[28] B. Kralik, E. K. Chang, and S. G. Louie, Phys. Rev. B 57, 7027 (1998).10.1103/PhysRevB.57.7027Search in Google Scholar
[29] J. C. Garcia, L. M. R. Scolfaro, A. T. Lino, V. N. Freire, G. A. Farias, et al., J. Appl. Phys. 100, 104103 (2006).10.1063/1.2386967Search in Google Scholar
[30] E. V. Stefanovich, A. Shluger, and C. R. Catlow, Phys. Rev. B 49, 11560 (1994).10.1103/PhysRevB.49.11560Search in Google Scholar
[31] N. Igawa, Y. Ishin, T Nagasaki, Y. Morii, S. Funahashi, et al., J. Am. Ceram. Soc. 76, 2673 (1993).10.1111/j.1151-2916.1993.tb03999.xSearch in Google Scholar
[32] R. Terki, G. Bertrand, H. Aourag, and C. Coddet, Mater. Sci. Semicond. Process 9, 1006 (2000).10.1016/j.mssp.2006.10.033Search in Google Scholar
[33] M. Fukuhara and I. Yamauchi, J. Mater. Sci. 28, 4681 (1993).10.1007/BF00414258Search in Google Scholar
[34] P. Bouvier, E. Djurado, E. Lucazeau, and L. Bihan, Phys. Rev. B. 62, 8731 (2000).10.1103/PhysRevB.62.8731Search in Google Scholar
[35] L. Vegard, Z. Phys. 5, 17 (1921).10.1007/BF01349680Search in Google Scholar
[36] F. El Haj Hassan and H. Akbarzadeh, Mater. Sci. Eng. B 21, 170 (2005).10.1016/j.mseb.2005.03.019Search in Google Scholar
[37] Z. Dridi, B. Bouhafs, and P. Ruterana, Comput. Matter 33, 136 (2005).10.1016/j.commatsci.2004.12.027Search in Google Scholar
[38] S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).10.1103/PhysRevB.63.165212Search in Google Scholar
[39] G. Mattioli, F. Filippone, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 78, 241201 (2008).10.1103/PhysRevB.78.241201Search in Google Scholar
[40] C. E. Ekuma and D. Bagayoko, Japan J. Appl. Phys. 50, 101103 (2011).10.1143/JJAP.50.101103Search in Google Scholar
[41] D. C. Cronemeyer, Phys. Rev. B 87, 876 (1952).10.1103/PhysRev.87.876Search in Google Scholar
[42] H. Fox, K. E. Newman, W. F. Schneider, and S. A. Corcelli, J. Chem. Theory Comput. 6, 499 (2010).10.1021/ct900665aSearch in Google Scholar PubMed
[43] D. Vogtenhuber, R. Podloucky, A. Neckel, S. G. Steinemann, and A. J. Freeman, Phys. Rev. B 49, 2099 (1994).10.1103/PhysRevB.49.2099Search in Google Scholar PubMed
[44] G. Rocker, J. A. Schaefer, and W. Gopel, Phys. Rev. B 30, 3704 (1984).10.1103/PhysRevB.30.3704Search in Google Scholar
[45] A. Amtout and R. Leoneli, Phys. Rev. B 51, 6842 (1995).10.1103/PhysRevB.51.6842Search in Google Scholar
[46] S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski, et al., J. Appl. Phys. 96, 7485 (2004).10.1063/1.1803107Search in Google Scholar
[47] H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo, et al., Appl. Phys. Lett. 81, 376 (2002).10.1063/1.1492024Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments
- Research Articles
- Mechanical, Dynamical and Thermodynamic Properties of Al-3wt%Mg from First Principles
- Gas Bubbles and Slugs Crossover in Air–Water Two-phase Flow by Multifractals
- Feinberg-Horodecki Equation with Pöschl-Teller Potential: Space-like Coherent States
- Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations
- On Topological Indices of Certain Dendrimer Structures
- Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach
- Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
- Effect of Gravomagnetism on the Trajectory of Light Ray
- Rapid Communication
- Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
Articles in the same Issue
- Frontmatter
- Review Article
- Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments
- Research Articles
- Mechanical, Dynamical and Thermodynamic Properties of Al-3wt%Mg from First Principles
- Gas Bubbles and Slugs Crossover in Air–Water Two-phase Flow by Multifractals
- Feinberg-Horodecki Equation with Pöschl-Teller Potential: Space-like Coherent States
- Approximate Solutions for the Nonlinear Third-Order Ordinary Differential Equations
- On Topological Indices of Certain Dendrimer Structures
- Increased Malleability in Tetragonal Zrx Ti1−x O2 Ternary Alloys: First-Principles Approach
- Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
- Effect of Gravomagnetism on the Trajectory of Light Ray
- Rapid Communication
- Maximum on the Electrical Conductivity Polytherm of Molten TeCl4