Abstract
Korteweg–de Vries (KdV)-type equations can describe the nonlinear phenomena in shallow water waves, stratified internal waves, and ion-acoustic waves in plasmas. In this article, the two-dimensional generalization of the Sawada–Kotera equation, one of the KdV-type equations, is discussed by virtue of the Bell polynomials and Hirota method. The results show that there exist multi-soliton solutions for such an equation. Relations between the direction of the soliton propagation and coordinate axes are shown. Elastic interaction with the multi-soliton solutions are analysed.
Acknowledgements
This work has been supported by the National Natural Science Foundation of China under Grant No. 11471050 and by the Foundation of Hebei Education Department of China under Grant Nos. QN2015051, QN2014041, and Z2015143.
References
[1] Y. T. Gao and B. Tian, Eur. Phys. Lett. 77, 15001 (2007).10.1209/0295-5075/77/15001Suche in Google Scholar
[2] X. Y. Gao, Europhys. Lett. 110, 15002 (2015).10.1209/0295-5075/110/15002Suche in Google Scholar
[3] K. Sawada and T. Kotera, Prog. Theor. Phys. 51, 1355 (1974).10.1143/PTP.51.1355Suche in Google Scholar
[4] A. Salas, Appl. Math. Comput. 196, 812 (2008).10.1016/j.amc.2007.07.013Suche in Google Scholar
[5] C. A. Gómez and A. H. Salas, Appl. Math. Comput. 217, 1408 (2010).10.1016/j.amc.2009.05.046Suche in Google Scholar
[6] C. G. Liu and Z. D. Dai, Appl. Math. Comput. 206, 272 (2008).10.1016/j.amc.2008.08.028Suche in Google Scholar
[7] A. M. Wazwaz and A. Ebaid, Rom. J. Phys. 59, 454 (2014).Suche in Google Scholar
[8] M. Matinfar, M. Aminzadeh, and M. Nemati, Indian J. Pure Appl. Math. 45, 111 (2014).10.1007/s13226-014-0054-ySuche in Google Scholar
[9] X. Lü, W. X. Ma, J. Yu, and C. M. Khalique, Commun. Nonlinear Sci. Numer. Simulat. 31, 40 (2016).10.1016/j.cnsns.2015.07.007Suche in Google Scholar
[10] X. Lü and F. H. Lin, Commun. Nonlinear Sci. Numer. Simulat. 32, 241 (2016).Suche in Google Scholar
[11] X. Lü, F. H. Lin, and F. H. Qi, Appl. Math. Model. 39, 3221 (2015).10.1016/j.apm.2014.10.046Suche in Google Scholar
[12] X. Lü and M. S. Peng, Chaos 23, 013122 (2013).10.1063/1.4790827Suche in Google Scholar
[13] X. Lü, W. X. Ma, and C. M. Khalique, Appl. Math. Lett. 50, 37 (2015).10.1016/j.aml.2015.06.003Suche in Google Scholar
[14] X. Lü, Chaos 23, 033137 (2013).10.1063/1.4821132Suche in Google Scholar
[15] Y. T. Gao and B. Tian, Phys. Plasmas 13, 120703 (2006).10.1063/1.2402916Suche in Google Scholar
[16] B. G. Konpelchenko and V. G. Dubrovsky, Phys. Lett. A 102, 15 (1984).10.1016/0375-9601(84)90442-0Suche in Google Scholar
[17] A. Maccari, Phys. Lett. A 265, 187 (2000).10.1016/S0375-9601(99)00842-7Suche in Google Scholar
[18] X. Lü, B. Tian, K. Sun, and P. Wang, J. Math. Phys. 51, 113506 (2010).10.1063/1.3504168Suche in Google Scholar
[19] Z. L. Zhao, Y. F. Zhang and T. C. Xia, Abstr. Appl. Anal. 2014, 534016 (2014).Suche in Google Scholar
[20] X. Lü, T. Geng, C. Zhang, H. W. Zhu, X. H. Meng, et al., Int. J. Mod. Phys. B 23, 5003 (2009).10.1142/S0217979209053382Suche in Google Scholar
[21] A. M. Wazwaz, Math. Meth. Appl. Sci. 34, 1580 (2011).10.1002/mma.1460Suche in Google Scholar
[22] H. X. Jia, J. Y. Ma, Y. J. Liu, and X. F. Liu, Indian J. Phys. 89, 281 (2015).10.1007/s12648-014-0544-0Suche in Google Scholar
[23] H.-X. Jia, Y.-J. Liu, and Y.-N. Wang, Z. Naturforsch. A. 71, 27 (2016).10.1515/zna-2015-0306Suche in Google Scholar
[24] E. T. Bell, Ann. Math. 35, 258 (1934).10.2307/1968431Suche in Google Scholar
[25] C. Gilson, F. Lambert, J. J. Nimmo, and R Willox, Proc. Roy. Soc. Lond. Ser. A 452, 223 (1996).10.1098/rspa.1996.0013Suche in Google Scholar
[26] F. Lambert and J. Springael, Chaos Soliton Frac. 12, 2821 (2001).10.1016/S0960-0779(01)00096-0Suche in Google Scholar
[27] F. Lambert and J. Springael, Acta Appl. Math. 102, 147 (2008).10.1007/s10440-008-9209-3Suche in Google Scholar
[28] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511543043Suche in Google Scholar
[29] F. Lambert, I. Loris, J. Springael, and R. Willox, J. Phys. A 27, 5325 (1994).10.1088/0305-4470/27/15/028Suche in Google Scholar
[30] D. W. Zuo, Y. T. Gao, X. Yu, Y. H. Sun, and L. Xue, Z. Naturforsch. A. 70, 309 (2015).10.1515/zna-2014-0340Suche in Google Scholar
[31] Q. Wang, D. Li, and M. Z. Liu, Chaos Soliton. Fract. 42, 3087 (2009).10.1016/j.chaos.2009.04.008Suche in Google Scholar
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Artikel in diesem Heft
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling