Startseite Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation

  • Da-Wei Zuo , Hui-Xia Mo EMAIL logo und Hui-Ping Zhou
Veröffentlicht/Copyright: 8. Februar 2016

Abstract

Korteweg–de Vries (KdV)-type equations can describe the nonlinear phenomena in shallow water waves, stratified internal waves, and ion-acoustic waves in plasmas. In this article, the two-dimensional generalization of the Sawada–Kotera equation, one of the KdV-type equations, is discussed by virtue of the Bell polynomials and Hirota method. The results show that there exist multi-soliton solutions for such an equation. Relations between the direction of the soliton propagation and coordinate axes are shown. Elastic interaction with the multi-soliton solutions are analysed.

PACS Numbers:: 05.45.Yv; 52.35.Mw; 52.35.Sb

Corresponding author: Hui-Xia Mo, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China, E-mail:

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant No. 11471050 and by the Foundation of Hebei Education Department of China under Grant Nos. QN2015051, QN2014041, and Z2015143.

References

[1] Y. T. Gao and B. Tian, Eur. Phys. Lett. 77, 15001 (2007).10.1209/0295-5075/77/15001Suche in Google Scholar

[2] X. Y. Gao, Europhys. Lett. 110, 15002 (2015).10.1209/0295-5075/110/15002Suche in Google Scholar

[3] K. Sawada and T. Kotera, Prog. Theor. Phys. 51, 1355 (1974).10.1143/PTP.51.1355Suche in Google Scholar

[4] A. Salas, Appl. Math. Comput. 196, 812 (2008).10.1016/j.amc.2007.07.013Suche in Google Scholar

[5] C. A. Gómez and A. H. Salas, Appl. Math. Comput. 217, 1408 (2010).10.1016/j.amc.2009.05.046Suche in Google Scholar

[6] C. G. Liu and Z. D. Dai, Appl. Math. Comput. 206, 272 (2008).10.1016/j.amc.2008.08.028Suche in Google Scholar

[7] A. M. Wazwaz and A. Ebaid, Rom. J. Phys. 59, 454 (2014).Suche in Google Scholar

[8] M. Matinfar, M. Aminzadeh, and M. Nemati, Indian J. Pure Appl. Math. 45, 111 (2014).10.1007/s13226-014-0054-ySuche in Google Scholar

[9] X. Lü, W. X. Ma, J. Yu, and C. M. Khalique, Commun. Nonlinear Sci. Numer. Simulat. 31, 40 (2016).10.1016/j.cnsns.2015.07.007Suche in Google Scholar

[10] X. Lü and F. H. Lin, Commun. Nonlinear Sci. Numer. Simulat. 32, 241 (2016).Suche in Google Scholar

[11] X. Lü, F. H. Lin, and F. H. Qi, Appl. Math. Model. 39, 3221 (2015).10.1016/j.apm.2014.10.046Suche in Google Scholar

[12] X. Lü and M. S. Peng, Chaos 23, 013122 (2013).10.1063/1.4790827Suche in Google Scholar

[13] X. Lü, W. X. Ma, and C. M. Khalique, Appl. Math. Lett. 50, 37 (2015).10.1016/j.aml.2015.06.003Suche in Google Scholar

[14] X. Lü, Chaos 23, 033137 (2013).10.1063/1.4821132Suche in Google Scholar

[15] Y. T. Gao and B. Tian, Phys. Plasmas 13, 120703 (2006).10.1063/1.2402916Suche in Google Scholar

[16] B. G. Konpelchenko and V. G. Dubrovsky, Phys. Lett. A 102, 15 (1984).10.1016/0375-9601(84)90442-0Suche in Google Scholar

[17] A. Maccari, Phys. Lett. A 265, 187 (2000).10.1016/S0375-9601(99)00842-7Suche in Google Scholar

[18] X. Lü, B. Tian, K. Sun, and P. Wang, J. Math. Phys. 51, 113506 (2010).10.1063/1.3504168Suche in Google Scholar

[19] Z. L. Zhao, Y. F. Zhang and T. C. Xia, Abstr. Appl. Anal. 2014, 534016 (2014).Suche in Google Scholar

[20] X. Lü, T. Geng, C. Zhang, H. W. Zhu, X. H. Meng, et al., Int. J. Mod. Phys. B 23, 5003 (2009).10.1142/S0217979209053382Suche in Google Scholar

[21] A. M. Wazwaz, Math. Meth. Appl. Sci. 34, 1580 (2011).10.1002/mma.1460Suche in Google Scholar

[22] H. X. Jia, J. Y. Ma, Y. J. Liu, and X. F. Liu, Indian J. Phys. 89, 281 (2015).10.1007/s12648-014-0544-0Suche in Google Scholar

[23] H.-X. Jia, Y.-J. Liu, and Y.-N. Wang, Z. Naturforsch. A. 71, 27 (2016).10.1515/zna-2015-0306Suche in Google Scholar

[24] E. T. Bell, Ann. Math. 35, 258 (1934).10.2307/1968431Suche in Google Scholar

[25] C. Gilson, F. Lambert, J. J. Nimmo, and R Willox, Proc. Roy. Soc. Lond. Ser. A 452, 223 (1996).10.1098/rspa.1996.0013Suche in Google Scholar

[26] F. Lambert and J. Springael, Chaos Soliton Frac. 12, 2821 (2001).10.1016/S0960-0779(01)00096-0Suche in Google Scholar

[27] F. Lambert and J. Springael, Acta Appl. Math. 102, 147 (2008).10.1007/s10440-008-9209-3Suche in Google Scholar

[28] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511543043Suche in Google Scholar

[29] F. Lambert, I. Loris, J. Springael, and R. Willox, J. Phys. A 27, 5325 (1994).10.1088/0305-4470/27/15/028Suche in Google Scholar

[30] D. W. Zuo, Y. T. Gao, X. Yu, Y. H. Sun, and L. Xue, Z. Naturforsch. A. 70, 309 (2015).10.1515/zna-2014-0340Suche in Google Scholar

[31] Q. Wang, D. Li, and M. Z. Liu, Chaos Soliton. Fract. 42, 3087 (2009).10.1016/j.chaos.2009.04.008Suche in Google Scholar

Received: 2015-10-22
Accepted: 2016-1-12
Published Online: 2016-2-8
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0445/html
Button zum nach oben scrollen