Abstract
Graphene plasmon has been attracting interests from both theoretical and experimental research due to its gate tunability and potential applications in the terahertz frequency range. Here, we propose an effective scheme to unidirectionally excite the graphene plasmon by exploiting magneto-optical materials in the famous attenuated total reflection (ATR) configuration. We show that the graphene plasmon dispersion relation in such a device is asymmetric in different exciting directions, thus making it possible to couple the incident light unidirectionally to the propagating plasmon. The split of absorption spectrum of graphene clearly indicates that under a magnetic field for one single frequency, graphene plasmon can only be excited in one direction. The possible gate tunablity of excitation direction and the further application of the proposed scheme, such as optical isolator, also are discussed.
Acknowledgments
This project was supported by the China Scholarship Council (CSC no. 201408420174), and also supported by Hubei Province Natural Science Foundation, China (nos. 2014CFB428 and 2015CFB502).
References
[1] B. Hu, Chin. Phys. B 24, 087101 (2015).10.1088/1674-1056/24/8/087101Search in Google Scholar
[2] H. Lin, D. Xu, M. F. Pantoja, S. G. Garcia, and H. L. Yang, Chin. Phys. B 23, 094203 (2014).10.1088/1674-1056/23/9/094203Search in Google Scholar
[3] H. Q. Wu, C. Y. Linghu, H. M. Lv, and H. Qian, Chin. Phys. B 22, 098106 (2013).10.1088/1674-1056/22/9/098106Search in Google Scholar
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, et al., Science 306, 666 (2004).10.1126/science.1102896Search in Google Scholar PubMed
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, et al., Nature 438, 197 (2005).10.1038/nature04233Search in Google Scholar PubMed
[6] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).10.1038/nature04235Search in Google Scholar PubMed
[7] A. K. Geim and K. S. Novoselov, Nature Mat. 6, 183 (2007).10.1038/nmat1849Search in Google Scholar
[8] N. A. H. Castro, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).10.1103/RevModPhys.81.109Search in Google Scholar
[9] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).10.1126/science.1157996Search in Google Scholar PubMed
[10] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).10.1103/PhysRevLett.100.117401Search in Google Scholar
[11] A. A. Balandin, Nature Mat. 10, 569 (2011).10.1038/nmat3064Search in Google Scholar
[12] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, et al., Science 320, 1308 (2008).10.1126/science.1156965Search in Google Scholar PubMed
[13] Y. V. Bludov, A. Ferreira, N. M. R. Peres, and M. I. Vasilevskiy, Int. J. Mod. Phys. B 27, 1341001 (2013).10.1142/S0217979213410014Search in Google Scholar
[14] L. Ju, B. Geng, J. C. Horng Girit, M. Martin, Z. Hao, et al., Nature Nano. 6, 630 (2011).10.1038/nnano.2011.146Search in Google Scholar
[15] M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80, 245435 (2009).10.1103/PhysRevB.80.245435Search in Google Scholar
[16] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, et al., Nature Nano. 7, 330 (2012).10.1038/nnano.2012.59Search in Google Scholar
[17] Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, et al., ACS Nano. 7, 2388 (2013).10.1021/nn3055835Search in Google Scholar
[18] Z. Y. Fang, Y. M. Wang, A. Schlather, Z. Liu, Y. Wu, et al., Nano Lett. 14, 299 (2013).10.1021/nl404042hSearch in Google Scholar
[19] Y. J. Bao, S. Zu, Y. F. Zhang, and Z. Y. Fang, ACS Photonics 2, 1135 (2015).10.1021/acsphotonics.5b00182Search in Google Scholar
[20] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, et al., Nature Phot. 7, 394 (2013).10.1038/nphoton.2013.57Search in Google Scholar
[21] F. Aires and N. M. R. Peres, Phys. Rev. B 86, 205401 (2012).Search in Google Scholar
[22] M. Farhat, S. Guenneau, and H. Bağci, Phys. Rev. Lett. 111 237404 (2013).10.1103/PhysRevLett.111.237404Search in Google Scholar PubMed
[23] J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Phys. Rev. Lett. 111, 237405 (2013).10.1103/PhysRevLett.111.237405Search in Google Scholar
[24] F. Xing, G. X. Meng, Q. Zhang, L. T. Pan, P. Wang, et al., Nano Lett. 14, 3563 (2014).10.1021/nl5012036Search in Google Scholar
[25] J. J. Chen, Z. Li, Y. Song, and Q. H. Gong, Appl. Phys. Lett. 4, 041113 (2010).10.1063/1.3472251Search in Google Scholar
[26] Y. J. Zhou, Q. Jiang, and T. J. Cui, Opt. Exp. 19, 5260 (2011).10.1364/OE.19.005260Search in Google Scholar
[27] F. L. Liu, Q. Cheng, and Y. D. Chong, Opt. Exp. 23, 2383 (2015).10.1364/OE.23.002383Search in Google Scholar
[28] G. Pirruccio, L. M. Moreno, G. Lozano, and J. G. Rivas, ACS Nano. 7 4810 (2013).10.1021/nn4012253Search in Google Scholar PubMed
[29] I. Arrazola, R. Hillenbrand, and A. Y. Nikitin, Appl. Phys. Lett. 104, 011111 (2014).10.1063/1.4860576Search in Google Scholar
[30] M. D. He, K. J. Wang, L. Wang, J. B. Li, J. Q. Liu, et al., Appl. Phys. Lett. 105, 081903 (2014).10.1063/1.4894090Search in Google Scholar
[31] Z. Yu, G. Veronis, Z. Wang, and S. Fan, Phys. Rev. Lett. 100, 023902 (2008).10.1103/PhysRevLett.100.023902Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling