Home Physical Sciences Electrical Conduction in Transition-Metal Salts
Article
Licensed
Unlicensed Requires Authentication

Electrical Conduction in Transition-Metal Salts

  • M.A. Grado-Caffaro EMAIL logo and M. Grado-Caffaro
Published/Copyright: February 17, 2016

Abstract

We predict that a given transition-metal salt as, for example, a K2CuCl4·2H2O–type compound, can behave as an electrical conductor in the paramagnetic case. In fact, we determine the electrical conductance in a salt of this type. This conductance is found to be quantised in agreement with previous well-known results. Related mathematical expressions in the context of superexchange interaction are obtained. In addition, we determine the corresponding (macroscopically viewed) current density and the associated electron wave functions.


Corresponding author: M.A. Grado-Caffaro, Scientific Consultants, c/o Julio Palacios 11, 9-B, 28029, Madrid, Spain, E-mail:

References

[1] M. A. Grado-Caffaro and M. Grado-Caffaro, Mod. Phys. Lett. B 16, 751 (2002).10.1142/S021798490200424XSearch in Google Scholar

[2] M. A. Grado-Caffaro and M. Grado-Caffaro, Mod. Phys. Lett. B 18, 909 (2004).10.1142/S0217984904007281Search in Google Scholar

[3] M. A. Grado-Caffaro and M. Grado-Caffaro, Acta Phys. Pol. A 128, 394 (2015).10.12693/APhysPolA.128.394Search in Google Scholar

[4] H. K. Rockstad, Solid State Commun. 9, 2233 (1971).10.1016/0038-1098(71)90637-5Search in Google Scholar

[5] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).10.1126/science.288.5465.462Search in Google Scholar

[6] S. C. Bhargava, S. Singh, A. H. Morrish, and Z. W. Li, Solid State Commun. 116, 575 (2000).10.1016/S0038-1098(00)00378-1Search in Google Scholar

[7] W. J. Looyestijn, T. O. Klaassen, and N. J. Poulis, Physica B 97, 33 (1979).10.1016/0378-4363(79)90004-4Search in Google Scholar

[8] N. D. Moon, K. H. Lee, and S. H. Choh, Can. J. Phys. 63, 946 (1985).Search in Google Scholar

[9] J. Zaanen and G. A. Sawatzky, Can. J. Phys. 65, 1262 (1987).10.1139/p87-201Search in Google Scholar

[10] S. Vulfson, Molecular Magnetochemistry, Taylor and Francis, London 1998.Search in Google Scholar

[11] J. Tersoff, D. R. Hamann, Phys. Rev. B 31, 805 (1985).10.1103/PhysRevB.31.805Search in Google Scholar PubMed

[12] J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986).10.1103/PhysRevLett.57.2579Search in Google Scholar

[13] R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, Phys. Rev. Lett. 58, 1192 (1987).10.1103/PhysRevLett.58.1192Search in Google Scholar

[14] J. A. Stroscio, D. T. Pierce, A. Davies, R. J. Celotta, and M. Weinert, Phys. Rev. Lett. 75, 2960 (1995).10.1103/PhysRevLett.75.2960Search in Google Scholar

[15] W. J. Looyestijn, Ph.D. Thesis, University of Leiden, Leiden, The Netherlands, 1979.Search in Google Scholar

[16] A. Soldatov, N. Bogolubov Jr., and S. Kruchinin, Condens. Matter. Phys. 9, 151 (2006).10.5488/CMP.9.1.151Search in Google Scholar

[17] V. Ermakov, S. Kruchinin, H. Hori, and A. Fujiwara, Int. J. Mod. Phys. B 21, 1827 (2007).10.1142/S0217979207037053Search in Google Scholar

[18] S. Kruchinin and H. Nagao, Int. J. Mod. Phys. B 26, 1230013 (2012).10.1142/S0217979212300137Search in Google Scholar

[19] M. Apostol, Phys. Lett. A 372, 5093 (2008).10.1016/j.physleta.2008.05.061Search in Google Scholar

[20] M. A. Grado-Caffaro and M. Grado-Caffaro, Nano 7, 1250019 (2012).10.1142/S1793292012500191Search in Google Scholar

Received: 2015-12-25
Accepted: 2016-1-17
Published Online: 2016-2-17
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0538/html
Scroll to top button