Abstract
In this article, the prolongation structure technique is applied to a generalised inhomogeneous Gardner equation, which can be used to describe certain physical situations, such as the stratified shear flows in ocean and atmosphere, ion acoustic waves in plasmas with a negative ion, interfacial solitary waves over slowly varying topographies, and wave motion in a non-linear elastic structural element with large deflection. The Lax pairs, which are derived via the prolongation structure, are more general than the Lax pairs published before. Under the Painlevé conditions, the linear-damping coefficient equals to zero, the quadratic non-linear coefficient is proportional to the dispersive coefficient c(t), the cubic non-linear coefficient is proportional to c(t), leaving no constraints on c(t) and the dissipative coefficient d(t). We establish the prolongation structure through constructing the exterior differential system. We introduce two methods to obtain the Lax pairs: (a) based on the prolongation structure, the Lax pairs are obtained, and (b) via the Lie algebra, we can derive the Pfaffian forms and Lax pairs when certain parameters are chosen. We set d(t) as a constant to discuss the influence of c(t) on the Pfaffian forms and Lax pairs, and to discuss the influence of d(t) on the Pfaffian forms and Lax pairs, we set c(t) as another constant. Then, we get different prolongation structure, Pfaffian forms and Lax pairs.
Acknowledgments
This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.
References
[1] R. H. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova, Phys. D 159, 35 (2001).10.1016/S0167-2789(01)00333-5Search in Google Scholar
[2] A. V. Slyunyaev, J. Exp. Theor. Phys. 92, 529 (2001).10.1134/1.1364750Search in Google Scholar
[3] R. Grimshaw, E. Pelinovsky, T. Talipova, and A. Kurkin, J. Phys. Ocean. 34, 2774 (2004).10.1175/JPO2652.1Search in Google Scholar
[4] Q. M. Wang, Y. T. Gao, C. Q. Su, Y. J. Shen, Y. J. Feng, et al., Z. Naturforsch. A 70, 365 (2015).10.1515/zna-2015-0060Search in Google Scholar
[5] C. Q. Su, Y. T. Gao, L. Xue, and X. Yu, Z. Naturforsch. A 70, 935 (2015).10.1515/zna-2015-0217Search in Google Scholar
[6] P. Jin, C. A. Bouman, and K. D. Sauer, IEEE Trans. Comput. Imaging 1, 200 (2015).10.1109/TCI.2015.2461492Search in Google Scholar
[7] E. T. Bell, Ann. Math. 35, 258 (1934).10.2307/1968431Search in Google Scholar
[8] Y. J. Feng, Y. T. Gao, Z. Y. Sun, D. W. Zuo, Y. J. Shen, et al., Phys. Scr. 90, 045201 (2015).10.1088/0031-8949/90/4/045201Search in Google Scholar
[9] J. W. Yang, Y. T. Gao, Q. M. Wang, C. Q. Su, Y. J. Feng, et al., Phys. B 481, 148 (2016).10.1016/j.physb.2015.10.025Search in Google Scholar
[10] Q. M. Wang, Y. T. Gao, C. Q. Su, B. Q. Mao, Z. Gao, et al., Ann. Phys. 363, 440 (2015).10.1016/j.aop.2015.10.001Search in Google Scholar
[11] B. Tian and Y. T. Gao, Phys. Plasmas 12, 070703 (2005).10.1063/1.1950120Search in Google Scholar
[12] M. Wadati, J. Phys. Soc. Jpn. 38, 673 (1975).10.1143/JPSJ.38.673Search in Google Scholar
[13] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin 1991.10.1007/978-3-662-00922-2Search in Google Scholar
[14] F. Caruello and M. Tabor, Phys. D 39, 77 (1989).10.1016/0167-2789(89)90040-7Search in Google Scholar
[15] N. C. Freeman and J. J. Nimmo, Phys. Lett. A 95, 1 (1983).10.1016/0375-9601(83)90764-8Search in Google Scholar
[16] J. J. Nimmo, Phys. Lett. A 99, 279 (1983).10.1016/0375-9601(83)90884-8Search in Google Scholar
[17] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-geometrical Approach to Nonlinear Integrable Equations, Springer, Berlin 1994.Search in Google Scholar
[18] C. Q. Su, Y. T. Gao, X. Yu, L. Xue, and Y. J. Shen, J. Math. Anal. Appl. 435, 735 (2016).10.1016/j.jmaa.2015.10.036Search in Google Scholar
[19] H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16, 1 (1975).10.1063/1.522396Search in Google Scholar
[20] É. Cartan, Les Systèmes Différentials Extérieurs Etleurs Applications Géométriques, Hermann, Pairs 1945.Search in Google Scholar
[21] R. K. Dodd and A. P. Fordy, Proc. R. Soc. Lond. A 385, 389 (1983).10.1098/rspa.1983.0020Search in Google Scholar
[22] R. K. Dodd and A. P. Fordy, J. Phys. A 17, 3249 (1984).10.1088/0305-4470/17/16/025Search in Google Scholar
[23] B. K. Harrison, Lect. Notes Phys. 205, 26 (1983).Search in Google Scholar
[24] F. B. Estabrook, Lect. Notes Math. 515, 136 (1976).10.1007/BFb0081166Search in Google Scholar
[25] A. Osborne, Chaos Solitons Fract. 5, 2623 (1995).10.1016/0960-0779(94)E0118-9Search in Google Scholar
[26] M. Coffey, Phys. Rev. B 54, 1279 (1996).10.1103/PhysRevB.54.1279Search in Google Scholar
[27] B. Tian and Y. T. Gao, Eur. Phys. J. D 33, 243 (2005).10.1140/epjd/e2005-00037-5Search in Google Scholar
[28] S. Turitsyn, A. Aceves, C. Jones, and V. Zharnitsky, Phys. Rev. E 58, R48 (1998).10.1103/PhysRevE.58.R48Search in Google Scholar
[29] X. Yu, Y. T. Gao, Z. Y. Sun, and Y. Liu, Phys. Rev. E 83, 056601 (2011).10.1103/PhysRevE.83.056601Search in Google Scholar PubMed
[30] X. Yu, Y. T. Gao, Z. Y. Sun, and Y. Liu, Nonl. Dyn. 67, 1023 (2012).10.1007/s11071-011-0044-0Search in Google Scholar
[31] K. R. Helfrich, W. K. Melville, and J. W. Miles, J. Fluid Mech. 149, 305 (1984).10.1017/S0022112084002664Search in Google Scholar
[32] A. M. Wazwaz, Communi. Nonl. Sci. Numer. Simul. 12, 1395 (2007).10.1016/j.cnsns.2005.11.007Search in Google Scholar
[33] Y. Z. Peng, Int. J. Theor. Phys. 42, 863 (2003).10.1023/A:1024475003055Search in Google Scholar
[34] K. W. Chow, R. H. J. Grimshaw, and E. Ding, Wave Motion 43, 158 (2005).10.1016/j.wavemoti.2005.09.005Search in Google Scholar
[35] H. X. Wu, Y. B. Zeng, and T. Y. Fan, Commun. Nonl. Sci. Numer. Simulat. 13, 2146 (2008).Search in Google Scholar
[36] J. Li, T. Xu, X. H. Meng, Y. X. Zhang, H. Q. Zhang, et al., J. Math. Anal. Appl. 336, 1443 (2007).10.1016/j.jmaa.2007.03.064Search in Google Scholar
[37] X. G. Xu, X. H. Meng, Y. T. Gao, and X. Y. Wen, Appl. Math. Comput. 210, 313 (2009).10.1016/j.amc.2008.10.049Search in Google Scholar
[38] Y. P. Liu, Y. T. Gao, and G. M. Wei, Phys. Rev. E 88, 053204 (2013).10.1103/PhysRevE.88.053204Search in Google Scholar PubMed
[39] S. Kumar, K. Sings, and R. K. Gupta, Ocean Eng. 70, 81 (2013).10.1016/j.oceaneng.2013.05.034Search in Google Scholar
[40] V. E. Groesen and E. M. de Jager, Mathematical Structures in Continuous Dynamical Systems, Stud. Math. Phys., Vol. 6, North Holland, Amsterdam 1994.Search in Google Scholar
[41] J. P. Cheng, S. K. Wang, K. Wu, and W. Z. Zhao, J. Math. Phys. 51, 093501 (2010).10.1063/1.3474917Search in Google Scholar
[42] Y. Q. Yang and Y. Chen, Commun. Theor. Phys. 56, 463 (2011).10.1088/0253-6102/56/3/13Search in Google Scholar
[43] P. Bracken, Acta Appl. Math. 113, 247 (2011).10.1007/s10440-010-9597-zSearch in Google Scholar
[44] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Cambridge University Press, Cambridge 1992.10.1017/CBO9780511623998Search in Google Scholar
[45] G. Q. Meng, Y. T. Gao, X. Yu, and Y. Qin, Appl. Math. Comput. 218, 10791 (2012).10.1016/j.amc.2012.03.054Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling