Startseite Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials

  • Leo van Wüllen EMAIL logo , Jan Gerrit Schiffmann , Jakob Kopp , Zhongqing Liu , Holger Kirchhain , Andre Düvel und Paul Heitjans EMAIL logo
Veröffentlicht/Copyright: 8. November 2016

Abstract

In this contribution we report on the development and application of modern NMR approaches for the in situ characterization of the crystallization of metastable materials. The work was performed within the framework of the DFG priority programme SPP 1415 “Crystalline Non-Equilibrium Phases”. As one of the goals of this project, the development of a NMR methodology which enables an analysis of local structural motifs on short (1–2 Å) and extended (2–6 Å) length scales without the need for fast magic angle spinning (MAS) has been defined, since the enormous centripetal forces which occur during fast sample rotation (up to 107 g) may intervene with the chemical or physical process which is being monitored. To achieve this goal, we developed a magic angle turning probe and pulse sequences allowing to trace the isotropic chemical shifts and heteronuclear dipolar couplings and hence the determination of structural motifs on short and intermediate length scales. With the implementation of novel inductive heating approaches the range of accessible rotation frequencies for in situ high temperature NMR measurements has been enlarged, now covering the νMAS range of 0–10 kHz with an accessible temperature of up to 700°C. Application of NMR methodologies for the characterization of crystallization processes and the structure and dynamics of novel phases, partially in joint collaborations within the priority program, are also reported.

Acknowledgments

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft within the priority programme SPP 1415. Collaborations and fruitful discussions within numerous members of the priority programme, especially with T. Nilges and M. Wiebcke are also cordially acknowledged.

References

[1] I. J. Lowe, Free induction decay of rotating solids. Phys. Rev. Lett.1959, 2, 285.10.1103/PhysRevLett.2.285Suche in Google Scholar

[2] E. R. Andrew, A. Bradbury, R. G. Eades, Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature1959, 183, 1802.10.1038/1831802a0Suche in Google Scholar

[3] J. P. Amoureux, C. Fernandez, S. Steuernagel, Z filtering in MQMAS NMR. J. Magn. Reson. Ser. A1996, 123, 116.10.1006/jmra.1996.0221Suche in Google Scholar

[4] L. B. Alemany, S. Steuernagel, J. P. Amoureux, R. L. Callender, A. R. Barron, Very fast MAS and MQMAS NMR studies of the spectroscopically challenging minerals kyanite and andalusite on 400, 500, and 800 MHz spectrometers. Solid State Nucl. Magn. Reson.1999, 14, 1.10.1016/S0926-2040(99)00011-9Suche in Google Scholar

[5] C. Fernandez, J. P. Amoureux, Triple-quantum MAS-NMR of quadrupolar nuclei. Solid State Nucl. Magn. Reson.1996, 5, 315.10.1016/0926-2040(95)01197-8Suche in Google Scholar

[6] A. Medek, J. S. Harwood, L. Frydman, Multiple-quantum magic-angle spinning NMR: a new method for the study of quadrupolar nuclei in solids. J. Am. Chem. Soc.1995, 117, 12779.10.1021/ja00156a015Suche in Google Scholar

[7] A. Medek, L. Frydman, Multiple-quantum magic-angle spinning NMR: a new technique for probing quadrupolar nuclei in solids. J. Braz. Chem. Soc.1999, 10, 263.10.1590/S0103-50531999000400003Suche in Google Scholar

[8] Z. H. Gan, Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc.2000, 122, 3242.10.1021/ja9939791Suche in Google Scholar

[9] K. J. Pike, S. E. Ashbrook, S. Wimperis, Two-dimensional satellite-transition MAS NMR of quadrupolar nuclei: shifted echoes, high-spin nuclei and resolution. Chem. Phys. Lett.2001, 345, 400.10.1016/S0009-2614(01)00912-5Suche in Google Scholar

[10] S. E. Ashbrook, S. Wimperis, High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectros.2004, 45, 53.10.1016/j.pnmrs.2004.04.002Suche in Google Scholar

[11] M. J. Thrippleton, T. J. Ball, S. Steuernagel, S. E. Ashbrook, S. Wimperis, STARTMAS: a MAS-based method for acquiring isotropic NMR spectra of spin I=3/2 nuclei in real time. Chem. Phys. Lett.2006, 431, 390.10.1016/j.cplett.2006.09.075Suche in Google Scholar

[12] A. Goldbourt, P. K. Madhu, Multiple-Quantum Magic-Angle Spinning: High-Resolution Solid-State NMR of Half-Integer Spin Quadrupolar Nuclei, In: Annual Reports on NMR Spectroscopy, (Ed. G. A. Webb), Academic Press: Burlington, 2005, vol. 54, p. 81.10.1016/S0066-4103(04)54003-6Suche in Google Scholar

[13] R. Dupree, D. Holland, P. W. McMillan, R. F. Pettifer, The structure of soda silica glasses – A MAS NMR study. J. Non-Cryst. Solids1984, 68, 399.10.1016/0022-3093(84)90020-6Suche in Google Scholar

[14] R. J. Kirkpatrick, MAS NMR-spectroscopy of minerals and glasses. Rev. Miner.1988, 18, 341.10.1515/9781501508974-011Suche in Google Scholar

[15] R. K. Brow, R. J. Kirkpatrick, G. L. Turner, The short-range structure of sodium phosphate glasses: 1. MAS NMR studies. J. Non-Cryst. Solids1990, 116, 39.10.1016/0022-3093(90)91043-QSuche in Google Scholar

[16] C. A. Fyfe, Y. Feng, H. Grondey, G. T. Kokotailo, H. Gies, One-dimensional and two-dimensional high resolution solid state NMR studies of zeolite lattice structures. Chem. Rev.1991, 91, 1525.10.1021/cr00007a013Suche in Google Scholar

[17] H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, The structural groups of alkali silicate glasses determined from Si-29 MAS NMR. J. Non-Cryst. Solids1991, 127, 53.10.1016/0022-3093(91)90400-ZSuche in Google Scholar

[18] X. Y. Xue, J. F. Stebbins, M. Kanzaki, P. F. McMillan, B. Poe, Pressure-induced silicon coordination and tetrahedral structural-changes in alkali oxide-silica melts up to 12 Gpa – NMR, Raman, and infrared-spectroscopy. Am. Miner.1991, 76, 8.Suche in Google Scholar

[19] H. Eckert, Structural characterization of noncrystalline solids and glasses using solid-state NMR. Prog. Nucl. Magn. Reson. Spectros.1992, 24, 159.10.1016/0079-6565(92)80001-VSuche in Google Scholar

[20] B. Zibrowius, E. Loffler, M. Hunger, Multinuclear MAS NMR and IR spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites1992, 12, 167.10.1016/0144-2449(92)90079-5Suche in Google Scholar

[21] R. K. Brow, R. J. Kirkpatrick, G. L. Turner, Nature of alumina in phosphate glasses. 2. Structure of sodium aluminophosphate glass. J. Am. Ceram. Soc.1993, 76, 919.10.1111/j.1151-2916.1993.tb05316.xSuche in Google Scholar

[22] E. Brunner, Solid State NMR – A powerful tool for the investigation of surface hydroxyl groups in zeolites and their interactions with adsorbed probe molecules. J. Mol. Struct.1995, 355, 61.10.1016/0022-2860(95)08867-USuche in Google Scholar

[23] C. Fernandez, J. P. Amoureux, J. M. Chezeau, L. Delmotte, H. Kessler, Al-27 MAS NMR characterization of AlPO4-14 enhanced resolution and information by MQMAS. Micropor. Mater.1996, 6, 331.10.1016/0927-6513(96)00040-5Suche in Google Scholar

[24] P. J. Dirken, S. C. Kohn, M. E. Smith, E. R. H. vanEck, Complete resolution of Si-O-Si and Si-O-Al fragments in an aluminosilicate glass by O-17 multiple quantum magic angle spinning NMR spectroscopy. Chem. Phys. Lett.1997, 266, 568.10.1016/S0009-2614(97)00041-9Suche in Google Scholar

[25] M. Hunger, Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal. Rev.1997, 39, 345.10.1080/01614949708007100Suche in Google Scholar

[26] R. K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids2000, 263, 1.10.1016/S0022-3093(99)00620-1Suche in Google Scholar

[27] S. K. Lee, J. F. Stebbins, Al-O-Al and Si-O-Si sites in framework aluminosilicate glasses with Si/Al=1: quantification of framework disorder. J. Non-Cryst. Solids2000, 270, 260.10.1016/S0022-3093(00)00089-2Suche in Google Scholar

[28] H. O. Pastore, S. Coluccia, L. Marchese, Porous aluminophosphates: from molecular sieves to designed acid catalysts. Ann. Rev. Mater. Res.2005, 35, 351.10.1146/annurev.matsci.35.103103.120732Suche in Google Scholar

[29] D. R. Neuville, L. Cormier, D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by Al-27 MQ-MAS NMR and Raman spectroscopy. Chem. Geol.2006, 229, 173.10.1016/j.chemgeo.2006.01.019Suche in Google Scholar

[30] G. N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys.2007, 56, 1.10.1080/00018730601147426Suche in Google Scholar

[31] M. Geppi, S. Borsacchi, G. Mollica, C. A. Veracini, Applications of solid-state NMR to the study of organic/inorganic multicomponent materials. Appl. Spectrosc. Rev.2009, 44, 1.10.1080/05704920802352564Suche in Google Scholar

[32] R. Born, M. Feike, C. Jäger, H. W. Spiess, 2D P-31 Exchange NMR – a new approach for a direct probing of the connectivities of Q(N) units in glasses. Z. Naturfors. Sect. A-J. Phys. Sci.1995, 50, 169.10.1515/zna-1995-2-308Suche in Google Scholar

[33] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates. Chem. Phys. Lett.1996, 258, 107.10.1016/0009-2614(96)00616-1Suche in Google Scholar

[34] A. E. Bennett, J. H. Ok, R. G. Griffin, S. Vega, Chemical shift correlation spectroscopy in rotating solids: Radio frequency‐driven dipolar recoupling and longitudinal exchange. J. Chem. Phys.1992, 96, 8624.10.1063/1.462267Suche in Google Scholar

[35] J. M. Griffiths, R. G. Griffin, Nuclear-magnetic-resonance methods for measuring dipolar couplings in rotating solids. Anal. Chim. Acta1993, 283, 1081.10.1016/0003-2670(93)80267-OSuche in Google Scholar

[36] M. Feike, R. Graf, I. Schnell, C. Jäger, H. W. Spiess, Structure of crystalline phosphates from P-31 double-quantum NMR spectroscopy. J. Am. Chem. Soc.1996, 118, 9631.10.1021/ja9619871Suche in Google Scholar

[37] R. Tycko, G. Dabbagh, Measurement of nuclear magnetic dipole-dipole couplings in magic angle spinning Nmr. Chem. Phys. Lett.1990, 173, 461.10.1016/0009-2614(90)87235-JSuche in Google Scholar

[38] Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, M. H. Levitt, Efficient dipolar recoupling in the Nmr of rotating solids – a sevenfold symmetrical radiofrequency pulse sequence. Chem. Phys. Lett.1995, 242, 304.10.1016/0009-2614(95)00741-LSuche in Google Scholar

[39] T. Gullion, J. Schaefer, Rotational-echo double-resonance Nmr. J. Magn. Reson.1989, 81, 196.10.1007/1-4020-3910-7_89Suche in Google Scholar

[40] Y. Pan, T. Gullion, J. Schaefer, Determination of C-N internuclear distances by rotational-echo double-resonance Nmr of solids. J. Magn. Reson.1990, 90, 330.10.1016/0022-2364(90)90138-YSuche in Google Scholar

[41] T. Gullion, Introduction to rotational-echo, double-resonance NMR. Concepts Magn. Reson.1998, 10, 277.10.1002/(SICI)1099-0534(1998)10:5<277::AID-CMR1>3.0.CO;2-USuche in Google Scholar

[42] T. Gullion, Detecting C-13-O-17 dipolar interactions by rotational-echo, adiabatic-passage, double-resonance NMR. J. Magn. Reson. Ser. A1995, 117, 326.10.1006/jmra.1995.0779Suche in Google Scholar

[43] T. Gullion, Measurement of Dipolar Interactions between Spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem. Phys. Lett.1995, 246, 325.10.1016/0009-2614(95)01120-XSuche in Google Scholar

[44] C. P. Grey, W. S. Veeman, The detection of weak heteronuclear coupling between Spin-1 and Spin-1/2 Nuclei in MAS NMR – N-14/C-13/H-1 triple resonance experiments. Chem. Phys. Lett.1992, 192, 379.10.1016/0009-2614(92)85486-TSuche in Google Scholar

[45] H. Eckert, S. J. Elbers, D. Epping, M. Janssen, M. W. Kalwei, Strojek, U. Voigt, Dipolar Solid State NMR Approaches Towards Medium-Range Structure in Oxide Glasses, in Topics in Current Chemsitry 246, In: New Techniques in Solid-State NMR (Ed. J. Klinowski) p. 195, 2005.10.1007/b98651Suche in Google Scholar

[46] L. van Wüllen, U. Müller, M. Jansen, Intermediate-range order in amorphous nitridic ceramics: lessons from modern solid-state NMR spectroscopy. Angew. Chem.-Int. Edit.2000, 39, 2519.10.1002/1521-3773(20000717)39:14<2519::AID-ANIE2519>3.0.CO;2-GSuche in Google Scholar

[47] L. van Wüllen, M. Jansen, Random inorganic networks: a novel class of high-performance ceramics. J. Mater. Chem.2001, 11, 223.10.1039/b002958kSuche in Google Scholar

[48] L. van Wüllen, G. Schwering, B-11-MQMAS and Si-29-{B-11} double-resonance NMR studies on the structure of binary B2O3-SiO2 glasses. Solid State Nucl. Magn. Reson.2002, 21, 134.10.1006/snmr.2002.0054Suche in Google Scholar

[49] L. van Wüllen, G. Tricot, S. Wegner, An advanced NMR protocol for the structural characterization of aluminophosphate glasses. Solid State Nucl. Magn. Reson.2007, 32, 44.10.1016/j.ssnmr.2007.07.004Suche in Google Scholar

[50] C. A. Fyfe, Y. Feng, H. Gies, H. Grondey, G. T. Kokotailo, Natural abundance 2-dimensional solid state Si-29 NMR: Investigations of 3-dimensional lattice connectivities in zeolite structures. J. Am. Chem. Soc.1990, 112, 3264.10.1021/ja00165a002Suche in Google Scholar

[51] C. A. Fyfe, K. C. Wongmoon, Y. Huang, H. Grondey, INEPT experiments in solid state NMR. J. Am. Chem. Soc.1995, 117, 10397.10.1021/ja00146a031Suche in Google Scholar

[52] A. Lesage, C. Auger, S. Caldarelli, L. Emsley, Determination of through-bond carbon-carbon connectivities in solid-state NMR using the INADEQUATE experiment. J. Am. Chem. Soc.1997, 119, 7867.10.1021/ja971089kSuche in Google Scholar

[53] A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley, Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy. J. Am. Chem. Soc.1998, 120, 13194.10.1021/ja983048+Suche in Google Scholar

[54] D. Franke, C. Hudalla, H. Eckert, Heteronuclear X-Y double quantum MAS NMR inorganic solids Applications for indirect detection and spectral editing of rare-spin resonances. Solid State Nucl. Magn. Reson.1992, 1, 33.10.1016/0926-2040(92)90007-VSuche in Google Scholar

[55] D. Massiot, F. Fayon, B. Alonso, J. Trebosc, J. P. Amoureux, Chemical bonding differences evidenced from J-coupling in solid state NMR experiments involving quadrupolar nuclei. J. Magn. Reson.2003, 164, 160.10.1016/S1090-7807(03)00134-4Suche in Google Scholar

[56] S. P. Brown, Perez-M. Torralba, D. Sanz, R. M. Claramunt, L. Emsley, Determining hydrogen-bond strengths in the solid state by NMR: the quantitative measurement of homonuclear J couplings. Chem. Commun.2002, 38, 1852.10.1039/B205324ASuche in Google Scholar

[57] F. Fayon, I. J. King, R. K. Harris, J. S. O. Evans, D. Massiot, Application of the through-bond correlation NMR experiment to the characterization of crystalline and disordered phosphates. Comptes Rendus Chimie2004, 7, 351.10.1016/j.crci.2003.10.019Suche in Google Scholar

[58] H. Liu, H. Ernst, D. Freude, F. Scheffler, W. Schwieger, In situ B-11 MAS NMR study of the synthesis of a boron-containing MFI type zeolite. Microporous Mesoporous Mat.2002, 54, 319.10.1016/S1387-1811(02)00392-XSuche in Google Scholar

[59] A. Ananthanarayanan, L. van Wuellen, Achieving high resolution dipolar NMR information without fast sample spinning: combining magic angle turning with dipolar based NMR methods. Solid State Nucl. Magn. Reson.2013, 49–50, 42.10.1016/j.ssnmr.2012.11.005Suche in Google Scholar

[60] S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. van Wuellen, S. Leoni, M. Wiebcke, A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder. Crystengcomm2016, 18, 2477.10.1039/C6CE00312ESuche in Google Scholar

[61] C. A. Schröder, I. A. Baburin, L. van Wüllen, M. Wiebcke, S. Leoni, Subtle polymorphism of zinc imidazolate frameworks: temperature-dependent ground states in the energy landscape revealed by experiment and theory. Crystengcomm2013, 15, 4036.10.1039/C2CE26045JSuche in Google Scholar

[62] A. Düvel, A. Kuhn, L. Robben, M. Wilkening, P. Heitjans, Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J. Phys. Chem. C2012, 116, 15192.10.1021/jp301193rSuche in Google Scholar

[63] V. Baran, L. van Wüllen, T. F. Faessler, Substitution of lithium for magnesium, zinc, and aluminum in Li15Si4: crystal structures, thermodynamic properties, as well as 6Li and 7Li NMR spectroscopy of Li15Si4 and Li15-xMxSi4 (M=Mg, Zn, and Al). Chem.-Eur. J.2016, 22, 6598.10.1002/chem.201505145Suche in Google Scholar

[64] A. Bax, N. Z. Szeverenyi, G. E. Maciel, Correlation of isotropic shifts and chemical shift anisotropies by two-dimensional fourier-transform magic-angle hopping NMR spectroscopy. J. Magn. Reson.1983, 52, 147.10.1016/0022-2364(83)90267-6Suche in Google Scholar

[65] N. M. Szeverenyi, A. Bax, G. E. Maciel, Magic-angle hopping as an alternative to magic-angle spinning for solid state NMR. J. Magn. Reson.1985, 61, 440.10.1016/0022-2364(85)90184-2Suche in Google Scholar

[66] Z. H. Gan, High resolution chemical shift and chemical shift anisotropy correlation in solids using slow magic angle spinning. J. Am. Chem. Soc.1992, 114, 8307.10.1021/ja00047a062Suche in Google Scholar

[67] S. Mamone, A. Dorsch, O. G. Johannessen, M. V. Naik, P. K. Madhu, M. H. Levitt, A Hall effect angle detector for solid-state NMR. J. Magn. Reson.2008, 190, 135.10.1016/j.jmr.2007.07.012Suche in Google Scholar PubMed

[68] J. Z. Hu, W. Wang, F. Liu, M. S. Solum, D. W. Alderman, R. J. Pugmire, D. M. Grant, Magic-angle turning experiments for measuring chemical shift tensor principal values in powdered solids. J. Magn. Reson. Ser. A1995, 113, 210.10.1006/jmra.1995.1082Suche in Google Scholar

[69] D. W. Alderman, G. McGeorge, J. Z. Hu, R. J. Pugmire, D. M. Grant, A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol. Phys.1998, 95, 1113.10.1080/00268979809483243Suche in Google Scholar

[70] G. G. Maresch, R. D. Kendrick, C. S. Yannoni, High temperature NMR using inductive heating. Rev. Sci. Instrum.1990, 61, 77.10.1063/1.1141903Suche in Google Scholar

[71] D. B. Ferguson, J. F. Haw, Transient methods for in situ NMR of reactions on solid catalysts using temperature jumps. Anal. Chem.1995, 67, 3342.10.1021/ac00114a034Suche in Google Scholar

[72] J. Rinnenthal, D. Wagner, T. Marquardsen, A. Krahn, F. Engelke, H. Schwalbe, A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes. J. Magn. Reson.2015, 251, 84.10.1016/j.jmr.2014.11.012Suche in Google Scholar PubMed

[73] H. Kirchhain, J. Holzinger, A. Mainka, A. Spörhase, A. Wixforth, L. van Wüllen, High-temperature MAS-NMR at high spinning speeds. Solid State Nucl. Magn. Reson.2016, 78, 37.10.1016/j.ssnmr.2016.06.003Suche in Google Scholar PubMed

[74] S. Wegner, L. van Wuellen, G. Tricot, Network dynamics and species exchange processes in aluminophosphate glasses: an in situ high temperature magic angle spinning NMR view. J. Phys. Chem. B2009, 113, 416.10.1021/jp8061064Suche in Google Scholar PubMed

[75] M. S. Whittingham, Lithium batteries and cathode materials. Chem. Rev.2004, 104, 4271.10.1021/cr020731cSuche in Google Scholar PubMed

[76] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials2005, 4, 366.10.1142/9789814317665_0022Suche in Google Scholar

[77] P. G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem.-Int. Edit.2008, 47, 2930.10.1002/anie.200702505Suche in Google Scholar PubMed

[78] J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mat.2010, 22, 587.10.1021/cm901452zSuche in Google Scholar

[79] D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chem. Commun.2013, 49, 10545.10.1039/c3cc46131aSuche in Google Scholar PubMed

[80] B. C. Melot, J. M. Tarascon, Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Res.2013, 46, 1226.10.1021/ar300088qSuche in Google Scholar PubMed

[81] C. V. Chandran, P. Heitjans, Solid-state NMR studies of lithium ion dynamics across materials classes. Ann. Rep. NMR Spectrosc. 2016, 89, 1.10.1016/bs.arnmr.2016.03.001Suche in Google Scholar

[82] V. Thangadurai, W. Weppner, Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater.2005, 15, 107.10.1002/adfm.200400044Suche in Google Scholar

[83] L. van Wüllen, T. Echelmeyer, H.-W. Meyer, D. Wilmer, The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys. Chem. Chem. Phys.2007, 9, 3298.10.1039/B703179CSuche in Google Scholar PubMed

[84] S. Ohta, T. Kobayashi, T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X=0-2). J. Power Sources2011, 196, 3342.10.1016/j.jpowsour.2010.11.089Suche in Google Scholar

[85] H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys.2011, 13, 19378.10.1039/c1cp22108fSuche in Google Scholar

[86] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev.2014, 43, 4714.10.1039/c4cs00020jSuche in Google Scholar

[87] H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem.-Int. Edit.2008, 47, 755.10.1002/anie.200703900Suche in Google Scholar

[88] V. Epp, O. Guen, H.-J. Deiseroth, M. Wilkening, Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J. Phys. Chem. Lett.2013, 4, 2118.10.1021/jz401003aSuche in Google Scholar

[89] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on Lithium Titanium Phosphate. J. Electrochem. Soc.1990, 137, 1023.10.1149/1.2086597Suche in Google Scholar

[90] G. Y. Adachi, N. Imanaka, H. Aono, Fast Li-circle plus conducting ceramic electrolytes. Adv. Mater.1996, 8, 127.10.1002/adma.19960080205Suche in Google Scholar

[91] M. A. Paris, J. Sanz, Structural changes in the compounds LiM2(IV)(PO4)3 (M-IV=Ge, Ti, Sn, and Hf) as followed by P-31 and Li-7 NMR. Phys. Rev. B1997, 55, 14270.10.1103/PhysRevB.55.14270Suche in Google Scholar

[92] M. Cretin, P. Fabry, Comparative study of lithium ion conductors in the system Li1-xAlxA2-x(IV) (PO4)3 with A(IV)=Ti or Ge and 0 <= x <= 0.7 for use as Li+ sensitive membranes. J. Eur. Ceram. Soc.1999, 19, 2931.10.1016/S0955-2219(99)00055-2Suche in Google Scholar

[93] X. Xu, Z. Wen, X. Wu, X. Yang, Z. Gu, Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0-0.20) with good electrical and electrochemical properties. J. Am. Ceram. Soc.2007, 90, 2802.10.1111/j.1551-2916.2007.01827.xSuche in Google Scholar

[94] J. S. Thokchom, N. Gupta, B. Kumar, Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J. Electrochem. Soc.2008, 155, A915.10.1149/1.2988731Suche in Google Scholar

[95] Z. Liu, S. Venkatachalam, H. Kirchhain, L. Van Wüllen, Study of the glass-to-crystal transformation of the NASICON-type electrolyte Li1+xAlxGe2-x(PO4)3. Solid State Ionics.2016, 295, 32.10.1016/j.ssi.2016.07.006Suche in Google Scholar

[96] C. Schröder, J. Ren, A. C. M. Rodrigues, H. Eckert, Glass-to-crystal transition in Li1+xAlxGe2-x(PO4)3: structural aspects studied by solid state. J. Phys. Chem. C2014, 118, 9400.10.1021/jp502265hSuche in Google Scholar

[97] Z. Liu, S. Venkatachalam, L. van Wüllen, Structure, phase separation and Li dynamics in sol-gel-derived Li1+xAlxGe2-x(PO4)3. Solid State Ionics.2015, 276, 47.10.1016/j.ssi.2015.03.018Suche in Google Scholar

[98] K. E. D.Wapenaar, J. L. Vankoesveld, J. Schoonman, Conductivity enhancement in fluorite-structured Ba1-xLaxF2+x solid solutions. Solid State Ionics.1981, 2, 145.10.1016/0167-2738(81)90172-7Suche in Google Scholar

[99] B. P. Sobolev, N. L. Tkachenko, Phase diagrams of BaF2-(Y,Ln)F3 systems. J. Less Common Met.1982, 85, 155.10.1016/0022-5088(82)90067-4Suche in Google Scholar

[100] S. V. Kuznetsov, P. P. Fedorov, Morphological stability of solid-liquid interface during melt crystallization of M1-x RxF2+x solid solutions. Inorg. Mater.2008, 44, 1434.10.1134/S0020168508130037Suche in Google Scholar

[101] J. K. Kjems, N. H. Andersen, J. Schoonman, K. Clausen, Structure and dynamics of disordered solids – a neutron scattering study of Ba1-xLaxF2+x. Phys. B1983, 120, 357.10.1016/0378-4363(83)90406-0Suche in Google Scholar

[102] N. H. Andersen, K. N. Clausen, J. K. Kjems, J. Schoonman, A study of the disorder in heavily doped Ba1-XLaXF2+X by neutron-scattering, ionic-conductivity and specific-heat measurements. J. Phys. C1986, 19, 2377.10.1088/0022-3719/19/14/004Suche in Google Scholar

[103] A. Düvel, B. Ruprecht, P. Heitjans, M. Wilkening, Mixed alkaline-earth effect in the metastable anion conductor Ba1-xCaxF2 (0 <= x <= 1): correlating long-range ion transport with local structures revealed by ultrafast F-19 MAS NMR. J. Phys. Chem. C2011, 115, 23784.10.1021/jp208472fSuche in Google Scholar

[104] A. Düvel, J. Bednarcik, V. Sepelak, P. Heitjans, Mechanosynthesis of the fast fluoride ion conductor Ba1-xLaxF2+x: from the fluorite to the tysonite structure. J. Phys. Chem. C2014, 118, 7117.10.1021/jp410018tSuche in Google Scholar

[105] N. I. Sorokin, SnF2-based solid electrolytes. Inorg. Mater.2004, 40, 989.10.1023/B:INMA.0000041335.17098.d1Suche in Google Scholar

[106] S. Ghedia, High pressure – high temperature investigations of solid oxides and fluorides. MPI fürFestkörperforschung, Stuttgart 2010.Suche in Google Scholar

[107] G. Denes, Phase-transitions and structural relationships between Ge5F12, GeF2, SnF2, and TeO2. J. Solid State Chem.1989, 78, 52.10.1016/0022-4596(89)90127-8Suche in Google Scholar

[108] G. Denes, J. Pannetier, J. Lucas, About SnF2 stannous fluoride. 2. Crystal structure of beta-SnF2 and gamma-SnF2. J. Solid State Chem.1980, 33, 1.10.1016/0022-4596(80)90541-1Suche in Google Scholar

[109] R. C. McDonald, H. H. Hau, K. Eriks, Crystallographic studies of Tin(II) compounds. 1. Crystal structure of tin(II)fluoride, SnF2. Inorg. Chem.1976, 15, 762.10.1021/ic50158a003Suche in Google Scholar

[110] T. Braeuniger, S. Ghedia, M. Jansen, Covalent bonds in alpha-SnF2 monitored by J-couplings in solid-state NMR spectra. Z. Anorg. Allg. Chem.2010, 636, 2399.10.1002/zaac.201000176Suche in Google Scholar

[111] E. Banks, S. Nakajima, M. Shone, New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions – photo-luminescence and energy transfer. J. Electrochem. Soc.1980, 127, 2234.10.1149/1.2129382Suche in Google Scholar

[112] Q. Bingyi, E. Banks, The binary system SrF2-MgF2 – Phase diagram and study of growth of SrMgF4. Mater. Res. Bull.1982, 17, 1185.10.1016/0025-5408(82)90067-8Suche in Google Scholar

[113] N. Ishizawa, K. Suda, B. E. Etschmann, T. Oya, N. Kodama, Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystal. C2001, 57, 784.10.1107/S0108270101006667Suche in Google Scholar

[114] C. Veitsch, F. Kubel, H. Hagemann, Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Mater. Res. Bull.2008, 43, 168.10.1016/j.materresbull.2007.02.010Suche in Google Scholar

[115] G. Scholz, S. Breitfeld, T. Krahl, A. Düvel, P. Heitjans, E. Kemnitz, Mechanochemical synthesis of MgF2 – MF2 composite systems (M=Ca, Sr, Ba). Solid State Sci.2015, 50, 32.10.1016/j.solidstatesciences.2015.10.004Suche in Google Scholar

Received: 2016-6-10
Accepted: 2016-9-6
Published Online: 2016-11-8
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Graphical Synopsis
  3. Editorial
  4. Synthesis and characterization of metastable transition metal oxides and oxide nitrides
  5. Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
  6. Thermal annealing of natural, radiation-damaged pyrochlore
  7. The formation of CdS quantum dots and Au nanoparticles
  8. Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
  9. Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
  10. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
  11. The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
  12. Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
  13. Structure and ion dynamics of mechanosynthesized oxides and fluorides
  14. Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
  15. Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
  16. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
  17. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
  18. Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
  19. Type-I silicon clathrates containing lithium
  20. Experimental and theoretical investigation of the chromium–vanadium–antimony system
  21. Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
  22. Snapshots of calcium carbonate formation – a step by step analysis
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1975/html
Button zum nach oben scrollen