Abstract
Recent advances in our understanding of CaCO3 nucleation from solution have provoked new and challenging questions. We have studied CaCO3 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate reproducibility. TEM snapshots taken during different stages of the precipitation process identified different phases and morphologies. At a high level of supersaturation homogeneous nucleation in solution led to the formation of amorphous CaCO3 particles (Ø≈30 nm), which transformed via vaterite to calcite. Nucleation occurred uniformly in solution which appears to be unique for the CaCO3 system. In the presence of Na-polymethacrylate (Na-PMA), heterogeneous nucleation was suppressed and Ca-polymer aggregates were formed in the prenucleation stage. Beyond a critical threshold supersaturation CaCO3 particles formed in solution outside of these aggregates. The nucleation process resembled that without additive, indicating that Na-PMA exerts only a minor effect on the CaCO3 nucleation. In the postnucleation stage, the polymer led to the formation of extended liquid-like networks, which served as a precursor phase for solid ACC particles that formed alongside the network.
Acknowledgments
This study was funded by the Deutsche Forschungsgemeinschaft (DFG) within the priority program 1415. M. Dietzsch is recipient of a Carl-Zeiss Fellowship and a collegiate of the MAINZ Graduate School of the State of Rhineland-Palatinate. We are indebted to M. Schmidt for giving access to the light scattering instruments. We are grateful to Prof. Dr. M. Schmidt and Dr. K. Fischer for helpful discussions. The facilities of the Electron Microscopy Center in Mainz (EZMZ) were supported by the State Excellence Cluster COMATT and SFB 625.
References
[1] J. Rieger, M. Kellermeier, L. Nicoleau, Angew. Chem. Int. Ed. 2014, 53, 12380.Suche in Google Scholar
[2] E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier, M. Panthöfer, W. Tremel, U. Kolb, Angew. Chem. Int. Ed. 2012, 51, 7041.10.1002/anie.201200845Suche in Google Scholar
[3] L. Brecevic, A. E. Nielsen, J. Cryst. Growth1989, 98, 504.10.1016/0022-0248(89)90168-1Suche in Google Scholar
[4] A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12096.10.1073/pnas.0404778101Suche in Google Scholar PubMed PubMed Central
[5] J. W. Morse, R. S. Arvidson, A. Lüttge, Chem. Rev.2007, 107, 342.10.1021/cr050358jSuche in Google Scholar PubMed
[6] D. Gebauer, A. Völkel, H. Cölfen, Science2008, 322, 1819.10.1126/science.1164271Suche in Google Scholar PubMed
[7] T. Wang, H. Cölfen, M. Antonietti, J. Am. Chem. Soc.2005, 127, 3246.10.1021/ja045331gSuche in Google Scholar PubMed
[8] R. Becker, W. Döring, Ann. Phys.1935, 416, 719.10.1002/andp.19354160806Suche in Google Scholar
[9] W. Kleber, Krist. Techn.1967, 2, 5.10.1002/crat.19670020102Suche in Google Scholar
[10] D. Gebauer, H. Cölfen, Nano Today2011, 6, 564.10.1016/j.nantod.2011.10.005Suche in Google Scholar
[11] D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergström, H. Cölfen, Chem. Soc. Rev. 2014, 43, 2348.10.1039/C3CS60451ASuche in Google Scholar PubMed
[12] T. Liu, E. Diemann, H. Li, A. W. M. Dress, A. Müller, Nature2003, 426, 59.10.1038/nature02036Suche in Google Scholar
[13] H. Schnöckel, H. Köhnlein, Polyhedron2002, 21, 489.10.1016/S0277-5387(01)01028-2Suche in Google Scholar
[14] G. Furrer, B. L. Phillips, K.-U. Ulrich, R. Pothig, W. H. Casey, Science2002, 297, 2245.10.1126/science.1076505Suche in Google Scholar
[15] G. Schmid, R. Boese, R. Pfeil, F. Bandermann, S. Mayer, G. H. M. Calis, J. W. A. van der Velden, Chem. Ber.1981, 114, 3634.10.1002/cber.19811141116Suche in Google Scholar
[16] P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science2007, 318, 430.10.1126/science.1148624Suche in Google Scholar
[17] V. N. Soloviev, A. Eichhöfer, D. Fenske, U. Banin, J. Am. Chem. Soc. 2001, 123, 2354.10.1021/ja003598jSuche in Google Scholar
[18] E. M. Pouget, P. H. H. Bomans, J. A. C. M. Goos, P. M. Frederik, G. de With, N. A. J. M. Sommerdijk, Science2009, 323, 1455.10.1126/science.1169434Suche in Google Scholar
[19] S. E. Wolf, L. Müller, R. Barrea, C. J. Kampf, J. Leiterer, U. Panne, T. Hoffmann, F. Emmerling, W. Tremel, Nanoscale2011,3, 1158.10.1039/c0nr00761gSuche in Google Scholar
[20] R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley, D. Gebauer, Nat. Commun.2011, 2, 590.10.1038/ncomms1604Suche in Google Scholar
[21] L. B. Gower, D. J. Odom, J. Cryst. Growth2000, 210, 719.10.1016/S0022-0248(99)00749-6Suche in Google Scholar
[22] M. H. Nielsen, S. Aloni, J. J. DeYoreo, Science2014, 345, 1158.10.1126/science.1254051Suche in Google Scholar
[23] M. Faatz, F. Gröhn, G. Wegner, Adv. Mater.2004, 16, 996.10.1002/adma.200306565Suche in Google Scholar
[24] E. Favvas, A. C. Mitropoulos, J. Eng. Sci. Technol. Rev.2008, 1, 25.10.25103/jestr.011.05Suche in Google Scholar
[25] J. Rieger, T. Frechen, G. Cox, W. Heckmann, C. Schmidt, J. Thieme, Faraday Discuss.2007, 136, 265.10.1039/b701450cSuche in Google Scholar
[26] S. E. Wolf, J. Leiterer, M. Kappl, F. Emmerling, W. Tremel, J. Am. Chem. Soc.2008, 130, 12342.10.1021/ja800984ySuche in Google Scholar
[27] S. E. Wolf, J. Leiterer, V. Pipich, R. Barrea, F. Emmerling, W. Tremel, J. Am. Chem. Soc2011, 133, 12642.10.1021/ja202622gSuche in Google Scholar
[28] C. A. Smolders, J. J. Aartsen, A. Steenbergen, Kolloid-Z.u.Z. Polymere1971, 243, 14.10.1007/BF01500609Suche in Google Scholar
[29] N. Kuwahara, K. Kubota, Phys. Rev. A1992, 45, 7385.10.1103/PhysRevA.45.7385Suche in Google Scholar
[30] J. Langer, Ann. Phys.1971, 65, 53.10.1016/0003-4916(71)90162-XSuche in Google Scholar
[31] K. Hono, K.-I. Hirano, Phase Transitions1987, 10, 223.10.1080/01411598708215443Suche in Google Scholar
[32] J. Liu, S. Pancera, V. Boyko, A. Shukla, T. Narayanan, K. Huber, Langmuir2010, 26, 17405.10.1021/la101888cSuche in Google Scholar PubMed
[33] J. Bolze, B. Peng, N. Dingenouts, P. Panine, T. Narayanan, M. Ballauff, Langmuir2002, 18, 8364.10.1021/la025918dSuche in Google Scholar
[34] D. Pontoni, J. Bolze, N. Dingenouts, T. Narayanan, M. Ballauff, J. Phys. Chem. B2003, 107, 5123.10.1021/jp0343640Suche in Google Scholar
[35] J. Bolze, D. Pontoni, M. Ballauff, T. Narayanan, H. Cölfen, J. Colloid Interface Sci.2004, 277, 84.10.1016/j.jcis.2004.04.029Suche in Google Scholar PubMed
[36] J. Liu, J. Rieger, K. Huber, Langmuir2008, 24, 8262.10.1021/la8006519Suche in Google Scholar PubMed
[37] J. Liu, S. Pancera, V. Boyko, J. Gummel, R. Nayuk, K. Huber, Langmuir2012, 28, 3593.10.1021/la203895dSuche in Google Scholar PubMed
[38] D. Li, M. H. Nielsen, J. J. DeYoreo, Methods Enzymol. 2013, 532, 147.10.1016/B978-0-12-416617-2.00007-2Suche in Google Scholar PubMed
[39] M. M. Reddy, A. R. Hoch, J. Colloid Interface Sci.2001, 235, 365.10.1006/jcis.2000.7378Suche in Google Scholar PubMed
[40] G. Xu, N. Yao, I. A. Aksay, J. T. Groves, J. Am. Chem. Soc.1998, 120, 11977.10.1021/ja9819108Suche in Google Scholar
[41] J. Rieger, J. Thieme, C. Schmidt, Langmuir2000, 16, 8300.10.1021/la0004193Suche in Google Scholar
[42] A. Sugawara, T. Ishii, T. Kato, Angew. Chem.2003, 115, 5457.10.1002/ange.200351541Suche in Google Scholar
[43] D. Volkmer, M. Harms, L. Gower, A. Ziegler, Angew. Chem.2005, 117, 645.10.1002/ange.200461386Suche in Google Scholar
[44] Z. Amjad, Ed. Water Soluble Polymers, Kluwer Academic Publishers, Boston, 2002.10.1007/b114563Suche in Google Scholar
[45] S. -C. Huang, K. Naka, Y. A. Chujo, Langmuir2007, 23, 12086.10.1021/la701972nSuche in Google Scholar PubMed
[46] D. Gebauer, H. Cölfen, A. Verch, M. Antonietti, Adv. Mater.2009, 21, 435.10.1002/adma.200801614Suche in Google Scholar
[47] A. Verch, D. Gebauer, M. Antonietti, H. Cölfen, Phys. Chem. Chem. Phys.2011, 13, 16811.10.1039/c1cp21328hSuche in Google Scholar PubMed
[48] A. Heiss, J. Biol. Chem.2003, 278, 13333.10.1074/jbc.M210868200Suche in Google Scholar PubMed
[49] A. Heiss, V. Pipich, W. Jahnen-Dechent, D. Schwahn, Biophys. J.2010, 99, 3986.10.1016/j.bpj.2010.10.030Suche in Google Scholar PubMed PubMed Central
[50] M. Balz, H. A. Therese, J. Li, J. S. Gutmann, M. Kappl, L. Nasdala, W. Hofmeister, H. -J. Butt, W. Tremel, Adv. Funct. Mater. 2005, 15, 683.10.1002/adfm.200400333Suche in Google Scholar
[51] T. Schüler, W. Tremel, Chem. Comm. 2011, 47, 5208.10.1039/c0cc05717gSuche in Google Scholar PubMed
[52] K. K. Sand, J. D. Rodriguez-Blanco, E. Makovicky, L. G. Benning, S. L. S. Stipp, Cryst. Growth Des. 2012, 12, 842.10.1021/cg2012342Suche in Google Scholar
[53] S.-F. Chen, H. Cölfen, M. Antonietti, S.-H. Yu, Chem. Comm. 2013, 49, 9564.10.1039/c3cc45427dSuche in Google Scholar
[54] F. Manoli, E. Dalas, J. Cryst. Growth2000, 218, 359.10.1016/S0022-0248(00)00560-1Suche in Google Scholar
[55] S. R. Dickinson, K. M. McGrath, J. Mater. Chem.2003, 13, 928.10.1039/b208741nSuche in Google Scholar
[56] M. Faatz, PhD Dissertation, University of Mainz, 2005, p. 46.Suche in Google Scholar
[57] H. Schäfer, Angew. Chem. Int. Ed. 1971, 10, 43.10.1002/anie.197100431Suche in Google Scholar
[58] J. D. Rodriguez-Blanco, S. Shaw, L. G. Benning, Nanoscale2011, 3, 265.10.1039/C0NR00589DSuche in Google Scholar
[59] A. Gehl, PhD Dissertation, University of Mainz, 2015.Suche in Google Scholar
[60] A. Gehl, M. Dietzsch, M. Mondeshki, S. Bach, T. Häger, B. Barton, U. Kolb, W. Tremel. Chem. Eur. J.2015, 21, 18192.10.1002/chem.201502229Suche in Google Scholar PubMed
[61] M. Hajir, G. Graf, W. Tremel, Chem. Commun.2014, 50, 6534.10.1039/C4CC02146KSuche in Google Scholar PubMed
[62] J. Ihli, Y.-W. Wang, B. Cantaert, Y.-Y- Kim, D. C. Green, P. H. H. Bomans, N. A. J. M. Sommerdijk, F. C. Meldrum, Chem. Mater.2015, 27, 3999.10.1021/acs.chemmater.5b01642Suche in Google Scholar
[63] S. Bach, M. Panthöfer, M. Dietzsch, R. Meffert, F. Emmerling, V. Ribeiro Celinski, J. Schmedt auf der Günne, W. Tremel, J. Am. Chem. Soc.2015, 137, 2285.10.1021/ja5103663Suche in Google Scholar PubMed
[64] K. Huber, J. Phys. Chem1993, 97, 9825.10.1021/j100140a046Suche in Google Scholar
[65] Y. Ikeda, M. Beer, M. Schmidt, K. Huber, Macromolecules1998, 31, 728.10.1021/ma970540pSuche in Google Scholar
[66] R. Schweins, K. Huber, Eur. Phys. J. E2001, 5, 117.10.1007/s101890170093Suche in Google Scholar
[67] C. G. Sinn, R. Dimova, M. Antonietti, Macromolecules2004, 37, 3444.10.1021/ma030550sSuche in Google Scholar
[68] M. Dietzsch, M. Barz, T. Schüler, S. Klassen, M. Schreiber, M. Susewind, N. Loges, N. Hellmann, M. Fritz, P. Theato, K. Fischer, A. Kühnle, M. Schmidt, R. Zentel, W. Tremel, Langmuir2013, 39, 3080.10.1021/la4000044Suche in Google Scholar PubMed
[69] L. B. Gower, Chem. Rev.2008, 108, 4551.10.1021/cr800443hSuche in Google Scholar PubMed PubMed Central
[70] M. A. Bewernitz, D. Gebauer, J. Long, H. Cölfen, L. B. Gower, Faraday Discuss.2012, 159, 291.10.1039/c2fd20080eSuche in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zkri-2016-1973) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Editorial
- Synthesis and characterization of metastable transition metal oxides and oxide nitrides
- Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
- Thermal annealing of natural, radiation-damaged pyrochlore
- The formation of CdS quantum dots and Au nanoparticles
- Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
- Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
- A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
- The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
- Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
- Structure and ion dynamics of mechanosynthesized oxides and fluorides
- Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
- Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
- Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
- Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
- Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
- Type-I silicon clathrates containing lithium
- Experimental and theoretical investigation of the chromium–vanadium–antimony system
- Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
- Snapshots of calcium carbonate formation – a step by step analysis
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Editorial
- Synthesis and characterization of metastable transition metal oxides and oxide nitrides
- Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
- Thermal annealing of natural, radiation-damaged pyrochlore
- The formation of CdS quantum dots and Au nanoparticles
- Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
- Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
- A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
- The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
- Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
- Structure and ion dynamics of mechanosynthesized oxides and fluorides
- Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
- Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
- Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
- Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
- Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
- Type-I silicon clathrates containing lithium
- Experimental and theoretical investigation of the chromium–vanadium–antimony system
- Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
- Snapshots of calcium carbonate formation – a step by step analysis