Startseite Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications

  • Marcus Weber , Maik Schlesinger , Markus Walther , Dirk Zahn , Christoph A. Schalley und Michael Mehring EMAIL logo
Veröffentlicht/Copyright: 12. Oktober 2016

Abstract

Investigations on bismuth oxido clusters are focused on the nucleation and growth processes towards large cluster motifs and their stability in the gas phase, which has been studied by electrospray ionization mass spectrometry (ESI-MS), molecular dynamics (MD) simulations and X-ray scattering experiments evaluated by pair distribution function (PDF) analysis. The formation of metastable bismuth(III) oxides was obtained by hydrolysis of polynuclear bismuth oxido clusters and subsequent thermal treatment under non-equilibrium conditions. Temperature dependent PXRD and Raman spectroscopic experiments gave insight into the formation process of metastable β-Bi2O3 starting from the amorphous hydrolysis products as-obtained from polynuclear bismuth oxido clusters. Furthermore, PXRD as well as energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of several new ternary bismuth(III) rich oxides such as Bi14O20(MO4) (M=S, Se) as-obtained by hydrolysis of bismuth oxido clusters in the presence of diverse additives.

Acknowledgments

We gratefully acknowledge the German Research Foundation (DFG-Priority Program 1415 “Crystalline Non-equilibrium Phases – Preparation, Characterization and in-situ Investigation of Formation Mechanisms”) for financial support. Furthermore we acknowledge Dr. D. Mansfeld, Dr. L. Miersch and Dipl. Chem. Lydia Wrobel for synthetic procedures of bismuth oxido clusters. We like to thank Dr. R. Troff, Dr. S. Richter, Dr. D. Weimann and D. Sattler for performing ESI-MS studies. We like to thank Dr. K.M.Ø. Jensen (University of Copenhagen) for performing X-ray scattering experiments and the PDF analyses. We thank Prof. Dr. D. R.T. Zahn (TU Chemnitz, Professorship for Semiconductor Physics) for access to the LabRAM HR800 and Dr. O. Gordan and Dr. A. Villabona for Raman spectroscopic performances. We like to thank Dr. T. Rüffer and Prof. Dr. H. Lang (TU Chemnitz, Professorship for Inorganic Chemistry) for performing single crystal X-ray structure analysis. Furthermore we acknowledge Prof. Dr. S. Spange (TU Chemnitz, Professorship for Polymeric Chemistry) for access to diffuse reflectance UV-Vis spectroscopy and Spectromat FTS-165 spectrometer for ATR IR spectroscopy. We like to thank Prof. Dr. M. Hietschold (TU Chemnitz, Professorship for Analysis of Solid Surfaces) for access to the NanoNovaSEM for SEM and EDX studies, Dr. S. Schulze for performing TEM analysis and M.Sc. B. Büchter for performing SEM and EDX analysis.

References

[1] P. J. Sadler, H. Y. Li, H. Z. Sun, Coordination chemistry of metals in medicine: target sites for bismuth. Coord. Chem. Rev.1999, 1856, 689–709.10.1016/S0010-8545(99)00018-1Suche in Google Scholar

[2] H. Ippen, Bismuth subnitrate – useful or obsolete. Hautarzt1997, 48, 424–424.10.1007/s001050050607Suche in Google Scholar

[3] J. R. Lambert, P. Midolo, The actions of bismuth in the treatment of helicobacter pylori infection. Aliment. Pharm. Ther.1997, 11, 27–33.10.1046/j.1365-2036.11.s1.13.xSuche in Google Scholar PubMed

[4] G. G. Briand, N. Burford, Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev.1999, 99, 2601–2657.10.1021/cr980425sSuche in Google Scholar PubMed

[5] R. G. Ge, H. Z. Sun, Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc. Chem. Res.2007, 40, 267–274.10.1021/ar600001bSuche in Google Scholar PubMed

[6] J. Boertz, L. M. Hartmann, M. Sulkowski, J. Hippler, F. Mosel, R. A. Diaz-Bone, K. Michalke, A. W. Rettenmeier, A. V. Hirner, Determination of trimethylbismuth in the human body after ingestion of colloidal bismuth subcitrate. Drug Metab. Dispos.2009, 37, 352–358.10.1124/dmd.107.020313Suche in Google Scholar PubMed

[7] K. Michalke, A. Schmidt, B. Huber, J. Meyer, M. Sulkowski, A. V. Hirner, J. Boertz, F. Mosel, P. Dammann, G. Hilken, H. J. Hedrich, M. Dorsch, A. W. Rettenmeier, R. Hensel, Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl. Environ. Microbiol.2008, 74, 3069–3075.10.1128/AEM.02933-07Suche in Google Scholar PubMed PubMed Central

[8] D. Figueroaquintanilla, E. Salazarlindo, B. Sack, R. Leonbarua, S. Sarabiaarce, M. Campossanchez, E. Eyzaguirremaccan, A controlled trial of bismuth subsalicylate in infants with acute watery diarrheal disease. N. Engl. J. Med.1993, 328, 1653–1658.10.1056/NEJM199306103282301Suche in Google Scholar PubMed

[9] L. A. Tillman, F. M. Drake, J. S. Dixon, J. R. Wood, Safety of bismuth in the treatment of gastrointestinal diseases. Aliment. Pharm. Ther.1996, 10, 459–467.10.1046/j.1365-2036.1996.22163000.xSuche in Google Scholar PubMed

[10] H. Z. Sun, Biological chemistry of arsenic, antimony and bismuth, Wiley, Hong Kong, 2011.10.1002/9780470975503Suche in Google Scholar

[11] V. Fruth, M. Popa, D. Berger, R. Ramer, A. Gartner, A. Ciulei, A. Zaharescu, Deposition and characterisation of bismuth oxide thin films. J. Eur. Ceram. Soc.2005, 25, 2171–2174.10.1016/j.jeurceramsoc.2005.03.025Suche in Google Scholar

[12] P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics1996, 89, 179–196.10.1016/0167-2738(96)00348-7Suche in Google Scholar

[13] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films. Surf. Sci.2002, 507, 480–485.10.1016/S0039-6028(02)01289-XSuche in Google Scholar

[14] S. Anandan, G. J. Lee, P. K. Chen, C. Fan, J. J. Wu, Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi2O3 and Au/Bi2O3 nanorods. Ind. Eng. Chem. Res.2010, 49, 9729–9737.10.1021/ie101361cSuche in Google Scholar

[15] K. Brezesinski, R. Ostermann, P. Hartmann, J. Perlich, T. Brezesinski, Exceptional photocatalytic activity of ordered mesoporous beta-Bi2O3 thin films and electrospun nanofiber mats. Chem. Mater.2010, 22, 3079–3085.10.1021/cm903780mSuche in Google Scholar

[16] A. Cabot, A. Marsal, J. Arbiol, J. R. Morante. Bi2O3 as a selective sensing material for NO detection. Sens. Actuators, B.2004, 99, 74–89.10.1016/j.snb.2003.10.032Suche in Google Scholar

[17] T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J. P. Jolivet, Bi2O3, BiVO4, and Bi2WO6 impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C2011, 115, 5657–5666.10.1021/jp109134zSuche in Google Scholar

[18] C. L. Wu, L. Shen, Q. L. Huang, Y. C. Zhang, Hydrothermal synthesis and characterization of Bi2O3 nanowires. Mater. Lett.2011, 65, 1134–1136.10.1016/j.matlet.2011.01.021Suche in Google Scholar

[19] M. Mehring, From molecules to bismuth oxide-based materials: potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev.2007, 251, 974–1006.10.1016/j.ccr.2006.06.005Suche in Google Scholar

[20] J. Ma, L. Z. Zhang, Y. H. Wang, S. L. Lei, X. B. Luo, S. H. Chen, G. S. Zeng, J. P. Zou, S. L. Luo, C. T. Au, Mechanism of 2,4-dinitrophenol photocatalytic degradation by Zeta-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chem. Eng. J.2014, 251, 371–380.10.1016/j.cej.2014.04.085Suche in Google Scholar

[21] T. Atou, H. Faqir, M. Kikuchi, H. Chiba, Y. Syono, A new high-pressure phase of bismuth oxide. Mater. Res. Bull.1998, 33, 289–292.10.1016/S0025-5408(97)00216-XSuche in Google Scholar

[22] G. Gattow, H. Fricke, Über Wismutoxide. IV. Beitrag zu den binären Systemen des Bi2O3 mit SiO2, GeO2 und SnO2. Z. Anorg. Allg. Chem.1963, 324, 287–296.10.1002/zaac.19633240509Suche in Google Scholar

[23] L. G. Sillén, X-ray studies on bismuth trioxide. Ark. Kem. Mineral. Geol.1937, 12A, 1–15.Suche in Google Scholar

[24] B. Aurivillius, L. G. Sillen, Polymorphy of bismuth trioxide. Nature1945, 155, 305–306.10.1038/155305a0Suche in Google Scholar

[25] W. Schumb, E. J. Rittner, Polymorphism of bismuth trioxide. J. Am. Chem. Soc.1943, 65, 1055–1060.10.1021/ja01246a013Suche in Google Scholar

[26] L. Zhou, W. Z. Wang, H. L. Xu, S. M. Sun, M. Shang, Bi2O3 hierarchical nanostructures controllable synthesis, growth mechanism, and their application in photocatalysis. Chem. Eur. J.2009, 15, 1776–1782.10.1002/chem.200801234Suche in Google Scholar PubMed

[27] H. H. Jing, X. Q. Chen, X. Y. Jiang, Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol-water systems. Micro Nano Lett.2012, 7, 357–359.10.1049/mnl.2011.0604Suche in Google Scholar

[28] Y. Wang, Y. L. Li, Metastable gamma-Bi2O3 tetrahedra: phase-transition dominated by polyethylene glycol, photoluminescence and implications for internal structure by etch. J. Colloid Interf. Sci.2015, 454, 238–244.10.1016/j.jcis.2015.05.001Suche in Google Scholar PubMed

[29] F. Lazarini, Crystal-Structure of a bismuth basic nitrate, Bi6O5(OH)3(NO3)5.3H2O. Acta Cryst. B.1978, 34, 3169–3173.10.1107/S0567740878010419Suche in Google Scholar

[30] F. Lazarini, Bismuth basic nitrate Bi6(H2O)(NO3)O4(OH)4(NO3)5. Acta Cryst. B.1979, 35, 448–450.10.1107/S0567740879003745Suche in Google Scholar

[31] B. Sundvall, Crystal and molecular-structure of tetraoxo-hydroxobismuth(III) nitrate monohydrate, Bi6O4(HO)4(NO3)6.H2O. Acta Chem. Scand. A1979, 33, 219–224.10.3891/acta.chem.scand.33a-0219Suche in Google Scholar

[32] P. C. Andrews, G. B. Deacon, C. M. Forsyth, P. C. Junk, I. Kumar, M. Maguire, Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate. Angew. Chem., Int. Ed.2006, 45, 5638–5642.10.1002/anie.200600469Suche in Google Scholar PubMed

[33] L. Miersch, M. Schlesinger, R. W. Troff, C. A. Schalley, T. Rüffer, H. R. Lang, D. Zahn, M. Mehring, Hydrolysis of a basic bismuth nitrate-formation and stability of novel bismuth oxido clusters. Chem. Eur. J.2011, 17, 6985–6990.10.1002/chem.201100673Suche in Google Scholar PubMed

[34] L. Miersch, T. Rüffer, M. Schlesinger, H. Lang, M. Mehring, Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates. Inorg. Chem.2012, 51, 9376–9384.10.1021/ic301148pSuche in Google Scholar PubMed

[35] A. Zahariev, N. Kaloyanov, C. Girginov, V. Parvanova, Synthesis and thermal decomposition of [Bi6O6(OH)2](NH2C6H4SO3)4. Thermochim. Acta2012, 528, 85–89.10.1016/j.tca.2011.11.003Suche in Google Scholar

[36] L. W. Zimmermann, T. Schleid, A basic bismuth(III) dodecahydro-closo-dodecaborate hydrate: [Bi6O4(OH)4][B12H12]3.10H2O. Z. Anorg. Allg. Chem.2011, 637, 1903–1908.10.1002/zaac.201100265Suche in Google Scholar

[37] B. Sundvall, Crystal-structure of tetraoxotetrahydroxohexa-bismuth(III) perchlorate heptahydrate, Bi6O4(HO)4(ClO4)6.7H2O – an X-ray and neutron-diffraction study. Inorg. Chem.1983, 22, 1906–1912.10.1021/ic00155a017Suche in Google Scholar

[38] L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, M. Mehring, A novel water-soluble hexanuclear bismuth oxido cluster – synthesis, structure and complexation with polyacrylate. Eur. J. Inorg. Chem.2010, 4763–4769.10.1002/ejic.201000753Suche in Google Scholar

[39] L. Miersch, T. Rüffer, M. Mehring, Organic-inorganic hybrid materials starting from the novel nanoscaled bismuth oxido methacrylate cluster [Bi38O45(OMc)24(DMSO)9].2DMSO.7H2O. Chem. Commun.2011, 47, 6353–6355.10.1039/c1cc11299fSuche in Google Scholar PubMed

[40] L. Wrobel, L. Miersch, M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, The bismuth hydrogen sulfate [Bi2(SO4)2(dmso)8](HSO4)2. Z. Anorg. Allg. Chem.2014, 640, 1431–1436.10.1002/zaac.201400020Suche in Google Scholar

[41] M. Schlesinger, L. Miersch, T. Rüffer, H. Lang, M. Mehring, Two novel nanoscaled bismuth oxido clusters, [Bi38O45(OMc)22(C8H7SO3)2(DMSO)6(H2O)1.5].2.5H2O and [Bi38O45(HSal)22(OMc)2(DMSO)15(H2O)].DMSO.2H2O. Main Group Met. Chem.2013, 36, 11–19.10.1515/mgmc-2012-0073Suche in Google Scholar

[42] D. Sattler, M. Schlesinger, M. Mehring, C. A. Schalley, Mass spectrometry and gas-phase chemistry of bismuth-oxido clusters. ChemPlusChem2013, 78, 1005–1014.10.1002/cplu.201300122Suche in Google Scholar PubMed

[43] L. Miersch, Synthese und Charakterisierung neuartiger Bismutoxido-Cluster als molekulare Vorstufen für organisch-anorganische Hybridmaterialien. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany2012.Suche in Google Scholar

[44] D. Mansfeld, M. Mehring, M. Schürmann, From a monomeric bismuth silanolate to a molecular bismuth oxo cluster: [Bi22O26(OSiMe2tBu)14]. Angew. Chem., Int. Ed.2005, 44, 245–249.10.1002/anie.200461476Suche in Google Scholar PubMed

[45] D. Mansfeld, L. Miersch, T. Rüffer, D. Schaarschmidt, H. Lang, T. Böhle, R. W. Troff, C. A. Schalley, J. Müller, M. Mehring, From {Bi22O26} to chiral ligand-protected {Bi38O45}-based bismuth oxido clusters. Chem. Eur. J.2011, 17, 14805–14810.10.1002/chem.201102437Suche in Google Scholar PubMed

[46] M. Schlesinger, Über nanoskalige Bismutoxidocluster zu (metastabilen) Polymorphen des Bismut(III)-oxids und deren photokatalytische Aktivität. PhD Thesis, Technische Universität Chemnitz, Chemnitz, Germany2013.Suche in Google Scholar

[47] N. Henry, M. Evain, P. Deniard, S. Jobic, F. Abraham, O. Mentre, [Bi2O2]2+ layers in Bi2O2(OH)(NO3): synthesis and structure determination. Z. Naturforsch. B2005, 60, 322-327.10.1515/znb-2005-0315Suche in Google Scholar

[48] M. Schlesinger, T. Rüffer, H. Lang, M. Mehring, Synthesis and molecular structure of the novel bismuth(III) sulfonate complex [Bi(C18H14P(O)SO3)2(DMSO)3](NO3).DMSO.2H2O. Main Group Met. Chem.2012, 35, 135–139.10.1515/mgmc-2012-0049Suche in Google Scholar

[49] G. Gattow, G. Kiel, Über Wismutnitrate. IV. Darstellung und Eigenschaften von Bi(NO3)3.5H2O. Z. Anorg. Allg. Chem.1965, 335, 61–73.10.1002/zaac.19653350106Suche in Google Scholar

[50] A. Pathak, V. L. Blair, R. L. Ferrero, M. Mehring, P. C. Andrews, Bismuth(III) benzohydroxamates: powerful anti-bacterial activity against helicobacter pylori and hydrolysis to a unique Bi34 oxido-cluster [Bi34O22(BHA)22(H-BHA)14(DMSO)6]. Chem. Commun.2014, 50, 15232–15234.10.1039/C4CC07329KSuche in Google Scholar

[51] M. Schlesinger, A. Pathak, S. Richter, D. Sattler, A. Seifert, T. Rüffer, P. C. Andrews, C. A. Schalley, H. Lang, M. Mehring, Salicylate-functionalized bismuth oxido clusters: hydrolysis processes and microbiological activity. Eur. J. Inorg. Chem.2014, 4218–4227.10.1002/ejic.201402493Suche in Google Scholar

[52] P. C. Andrews, G. B. Deacon, P. C. Junk, I. Kumar, J. G. MacLellan, Synthesis, ethanolysis, and hydrolysis of bismuth(III) ortho-nitrobenzoate complexes en route to a pearl necklace-like polymer of Bi10 oxo-clusters. Organometallics2009, 28, 3999–4008.10.1021/om9002158Suche in Google Scholar

[53] E. Asato, K. Katsura, M. Mikuriya, U. Turpeinen, I. Mutikainen, J. Reedijk, Synthesis, structure, and spectroscopic properties of bismuth citrate compounds and the bismuth-containing ulcer-healing agent Colloidal Bismuth Subcitrate (CBS). 4. crystal-structure and solution behavior of a unique dodecanuclear cluster (NH4)12[Bi12O8(Cit)8](H2O)10. Inorg. Chem.1995, 34, 2447–2454.10.1021/ic00113a028Suche in Google Scholar

[54] M. Mehring, M. Schürmann, The first bismuth phosphonate cluster. X-ray single crystal structure of [(t-BuPO3)10(t-BuPO3H)2Bi14O10.3C6H6.4H2O]. Chem. Commun.2001, 2354–2355.10.1039/b107220jSuche in Google Scholar PubMed

[55] P. C. Andrews, M. Busse, P. C. Junk, C. M. Forsyth, R. Peiris, Sulfonato-encapsulated bismuth(III) oxido-clusters from Bi2O3 in water under mild conditions. Chem. Commun.2012, 48, 7583–7585.10.1039/c2cc33495jSuche in Google Scholar PubMed

[56] M. Walther, D. Zahn. Molecular mechanisms of [Bi6O4(OH)4](NO3)6 precursor activation, agglomeration, and ripening towards bismuth oxide nuclei. Eur. J. Inorg. Chem.2015, 1178–1181.10.1002/ejic.201402751Suche in Google Scholar

[57] A. F. Gualtieri, S. Immovilli, M. Prudenziati, Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3. Powder Diffr.1997, 12, 90–92.10.1017/S0885715600009490Suche in Google Scholar

[58] G. Gattow, H. Schröder, Über Wismutoxide. III. Die Kristallstruktur der Hochtemperaturmodifikation von Wismut(III)-Oxid (Delta-Bi2O3). Z. Anorg. Allg. Chem.1962, 318, 176–189.10.1002/zaac.19623180307Suche in Google Scholar

[59] H. A. Harwig, Structure of bismuthsesquioxide – alpha, beta, gamma and delta-phase. Z. Anorg. Allg. Chem.1978, 444, 151–166.10.1002/zaac.19784440118Suche in Google Scholar

[60] S. Neov, V. Marinova, M. Reehuis, R. Sonntag, Neutron-diffraction study of Bi12MO20 single crystals with sillenite structure (M=Si, Si0.995Mn0.005, Bi0.53Mn0.47). Appl. Phys. A.2002, 74, 1016–1018.10.1007/s003390101178Suche in Google Scholar

[61] M. Drache, P. Roussel, J. P. Wignacourt, Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3. Chem. Rev.2007, 107, 80–96.10.1021/cr050977sSuche in Google Scholar PubMed

[62] E. M. Levin, R. S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on polymorphism of Bi2O3. J. Res. Natl. Bur. Stand. A.1964, A 68, 197–206.10.6028/jres.068A.020Suche in Google Scholar PubMed PubMed Central

[63] M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxido clusters. Dalton Trans.2013, 42, 1047–1056.10.1039/C2DT32119JSuche in Google Scholar

[64] M. Schlesinger, M. Weber, S. Schulze, M. Hietschold, M. Mehring, Metastable beta-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen2013, 2, 146–155.10.1002/open.201300013Suche in Google Scholar PubMed PubMed Central

[65] L. Kumari, J. H. Lin, Y. R. Ma, One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties. J. Phys.: Condes. Matter.2007, 19, 406204.10.1088/0953-8984/19/40/406204Suche in Google Scholar

[66] M. Weber, M. Schlesinger, M. Mehring, Evaluation of synthetic methods on the synthesis of bismuth(III) oxide polymorphs: formation of binary versus ternary oxides. Cryst. Growth Des.2016, DOI: 10.1021/acs.cgd.6b00628.Suche in Google Scholar

[67] R. A. Laudise, A. A. Ballman, Solubility of quartz under hydrothermal conditions. J. Phys. Chem.1961, 65, 1396–1400.10.1021/j100826a028Suche in Google Scholar

[68] T. K. Tseng, J. H. Choi, D. W. Jung, M. Davidson, P. H. Holloway, Three-dimensional self-assembled hierarchical architectures of gamma-phase flowerlike bismuth oxide. ACS Appl. Mater. Interfaces2010, 2, 943–946.10.1021/am900812aSuche in Google Scholar

[69] W. Zhou, Defect fluorite-related superstructures in the Bi2O3-V2O5 system. J. Solid State Chem.1988, 76, 290–300.10.1016/0022-4596(88)90222-8Suche in Google Scholar

[70] F. D. Hardcastle, I. E. Wachs, H. Eckert, D. A. Jefferson, Vanadium(V) Environments in bismuth vanadates – a structural investigation using Raman-spectroscopy and solid-state V-51 NMR. J. Solid State Chem.1991, 90, 194–210.10.1016/0022-4596(91)90135-5Suche in Google Scholar

[71] A. Watanabe, Is it possible to stabilize delta-Bi2O3 by an oxide additive? Solid State Ionics1990, 40-1, 889–892.10.1016/0167-2738(90)90145-HSuche in Google Scholar

[72] M. G. Francesconi, A. L. Kirbyshire, C. Greaves, O. Richard, G. Van Tendeloo, Synthesis and structure of Bi14O20(SO4), a new bismuth oxide sulfate. Chem. Mater.1998, 10, 626–632.10.1021/cm9706255Suche in Google Scholar

[73] P. Kitschke, S. Schulze, M. Hietschold, M. Mehring, Synthesis of germanium dioxide nanoparticles in benzyl alcohols – a comparison. Main Group Met. Chem.2013, 36, 209–214.10.1515/mgmc-2013-0038Suche in Google Scholar

[74] G. Corsmit, M. A. Vandriel, R. J. Elsenaar, W. Vandeguchte, A. M. Hoogenboom, J. C. Sens, Thermal-analysis of bismuth-germanate compounds. J. Cryst. Growth1986, 75, 551–560.10.1016/0022-0248(86)90101-6Suche in Google Scholar

[75] V. V. Zyryanov, V. I. Smirnov, M. I. Ivanovskaya, Mechanochemical synthesis of crystalline compounds in the Bi2O3-GeO2 system. Inorg. Mater.2005, 41, 618–626.10.1007/s10789-005-0180-3Suche in Google Scholar

Received: 2016-6-7
Accepted: 2016-9-6
Published Online: 2016-10-12
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Graphical Synopsis
  3. Editorial
  4. Synthesis and characterization of metastable transition metal oxides and oxide nitrides
  5. Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets
  6. Thermal annealing of natural, radiation-damaged pyrochlore
  7. The formation of CdS quantum dots and Au nanoparticles
  8. Crystalline chalcogenido metalates – synthetic approaches for materials synthesis and transformation
  9. Fundamental theoretical and practical investigations of the polymorph formation of small amphiphilic molecules, their co-crystals and salts
  10. A density-functional theory approach to the existence and stability of molybdenum and tungsten sesquioxide polymorphs
  11. The ZIF system zinc(II) 4,5-dichoroimidazolate: theoretical and experimental investigations of the polymorphism and crystallization mechanisms
  12. Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization
  13. Structure and ion dynamics of mechanosynthesized oxides and fluorides
  14. Scaled-up solvothermal synthesis of nanosized metastable indium oxyhydroxide (InOOH) and corundum-type rhombohedral indium oxide (rh-In2O3)
  15. Development and application of novel NMR methodologies for the in situ characterization of crystallization processes of metastable crystalline materials
  16. Phase formation and stability in TiOx and ZrOx thin films: Extremely sub-stoichiometric functional oxides for electrical and TCO applications
  17. Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable bismuth oxide modifications
  18. Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution
  19. Type-I silicon clathrates containing lithium
  20. Experimental and theoretical investigation of the chromium–vanadium–antimony system
  21. Synthesis and crystal structure of three new bismuth(III) arylsulfonatocarboxylates
  22. Snapshots of calcium carbonate formation – a step by step analysis
Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2016-1970/html
Button zum nach oben scrollen