Startseite Lamb wave based approach to the determination of acoustic material parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lamb wave based approach to the determination of acoustic material parameters

  • Sarah Johannesmann

    Sarah Johannesmann, M. Sc. is a research associate at the Measurement Engineering Group at Paderborn University, Germany. After graduating in 2016, she now works on methods for the simulation of guided acoustic fields and the determination of acoustic material parameters.

    EMAIL logo
    , Leander Claes

    Dr.-Ing. Leander Claes completed his studies in electrical engineering in 2014. Since 2015, he has been a research associate and, starting mid-2016, deputy head of the Measurement Engineering Group at Paderborn University, Germany. His research includes the development of acoustic measurement procedures, with a focus on material and fluid characterisation applications.

    , Nadine Feldmann

    Nadine Feldmann, M. Sc. has been a research associate at the Measurement Engineering Group at the Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany until november 2021. Her field of research included inverse measurement procedures and the characterisation of piezoelectric ceramics. She now works as a Software developer at dSPACE GmbH.

    , Henning Zeipert

    Henning Zeipert, M. Sc. graduated from Paderborn University with a degree in electrical engineering in 2019. Since 2020 he is a research associate at the Measurement Engineering Group at Paderborn University, Germany where his research focuses on methods for the characterisation of coupled multilayered systems and the determination of acoustic material parameters.

    und Bernd Henning

    Prof. Dr.-Ing. Bernd Henning is head of the Measurement Engineering Group, Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His main areas of research are acoustic measurement procedures, ultrasonic and optical measurement engineering as well as biomedical measurement techniques.

Veröffentlicht/Copyright: 12. April 2022

Abstract

In this paper a measurement procedure to identify viscoelastic material parameters of plate-like samples using broadband ultrasonic waves is presented. Ultrasonic Lamb waves are excited via the thermoelastic effect using laser radiation and detected by a piezoelectric transducer. The resulting measurement data is transformed to yield information about multiple propagating Lamb waves as well as their attenuation. These results are compared to simulation results in an inverse procedure to identify the parameters of an elastic and a viscoelastic material model.

Zusammenfassung

In diesem Beitrag wird ein Messverfahren zur Bestimmung viskoelastischer Materialparameter von plattenförmigen Proben mit breitbandigen Ultraschallwellen vorgestellt. Ultraschall-Lambwellen werden über den thermoelastischen Effekt mittels Laserstrahlung angeregt und von einem piezoelektrischen Wandler detektiert. Transformationen der Messdaten liefern Information über die sich ausbreitenden Lamb-Wellen und deren Dämpfung. Diese Ergebnisse werden in einem inversen Verfahren mit Simulationsergebnissen verglichen, um die Parameter eines elastischen und eines viskoelastischen Materialmodells zu identifizieren.

Award Identifier / Grant number: 449607253

Award Identifier / Grant number: 409779252

Funding statement: The authors would like to thank the German Research Foundation (DFG) for financial support of the projects no. 449607253 and 409779252.

About the authors

Sarah Johannesmann

Sarah Johannesmann, M. Sc. is a research associate at the Measurement Engineering Group at Paderborn University, Germany. After graduating in 2016, she now works on methods for the simulation of guided acoustic fields and the determination of acoustic material parameters.

Dr.-Ing. Leander Claes

Dr.-Ing. Leander Claes completed his studies in electrical engineering in 2014. Since 2015, he has been a research associate and, starting mid-2016, deputy head of the Measurement Engineering Group at Paderborn University, Germany. His research includes the development of acoustic measurement procedures, with a focus on material and fluid characterisation applications.

Nadine Feldmann

Nadine Feldmann, M. Sc. has been a research associate at the Measurement Engineering Group at the Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany until november 2021. Her field of research included inverse measurement procedures and the characterisation of piezoelectric ceramics. She now works as a Software developer at dSPACE GmbH.

Henning Zeipert

Henning Zeipert, M. Sc. graduated from Paderborn University with a degree in electrical engineering in 2019. Since 2020 he is a research associate at the Measurement Engineering Group at Paderborn University, Germany where his research focuses on methods for the characterisation of coupled multilayered systems and the determination of acoustic material parameters.

Prof. Dr.-Ing. Bernd Henning

Prof. Dr.-Ing. Bernd Henning is head of the Measurement Engineering Group, Faculty of Electrical Engineering, Computer Science and Mathematics at Paderborn University, Germany. His main areas of research are acoustic measurement procedures, ultrasonic and optical measurement engineering as well as biomedical measurement techniques.

Acknowledgment

The authors would like to thank the staff at Paderborn Center for Parallel Computing (PC2) for supplying access to the OCuLUS cluster.

References

1. H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 93, no. 648, pp. 114–128, 1917.10.1098/rspa.1917.0008Suche in Google Scholar

2. C. Bermes, J.-Y. Kim, J. Qu, and L. J. Jacobs, “Experimental characterization of material nonlinearity using Lamb waves,” Applied Physics Letters, vol. 90, p. 021901, Jan. 2007.10.1063/1.2431467Suche in Google Scholar

3. C. Grünsteidl, T. Berer, M. Hettich, and I. Veres, “Determination of thickness and bulk sound velocities of isotropic plates using zero-group-velocity Lamb waves,” Applied Physics Letters, vol. 112, p. 251905, June 2018.10.1063/1.5034313Suche in Google Scholar

4. N. Bochud, J. Laurent, F. Bruno, D. Royer, and C. Prada, “Towards real-time assessment of anisotropic plate properties using elastic guided waves,” Journal of the Acoustical Society of America, vol. 143, pp. 1138–1147, 2018.10.1121/1.5024353Suche in Google Scholar PubMed

5. D. Alleyne and P. Cawley, “A 2-dimensional Fourier transform method for the quantitative measurement of Lamb modes,” in IEEE Symposium on Ultrasonics, pp. 1143–1146, IEEE, 1990.10.1109/ULTSYM.1990.171541Suche in Google Scholar

6. F. Singer, “Mess- und Analysemethoden in der Laserakustik bei breitbandiger Anregung,” tm – Technisches Messen, vol. 82, pp. 45–51, 2015.10.1515/teme-2014-0030Suche in Google Scholar

7. Y. Jing and C. Jian-Chun, “A new inverse method of elastic constants for a fibre-reinforced composite plate from laser-based ultrasonic Lamb waves,” Chinese Physics Letters, vol. 18, pp. 1620–1623, Nov. 2001.10.1088/0256-307X/18/12/324Suche in Google Scholar

8. D. Clorennec, C. Prada, and D. Royer, “Laser ultrasonic inspection of plates using zero-group velocity lamb modes,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 5, pp. 1125–1132, 2010.10.1109/TUFFC.2010.1523Suche in Google Scholar PubMed

9. L. Claes, T. Meyer, F. Bause, J. Rautenberg, and B. Henning, “Determination of the material properties of polymers using laser-generated broadband ultrasound,” Journal of Sensors and Sensor Systems, vol. 5, no. 1, pp. 187–196, 2016.10.5194/jsss-5-187-2016Suche in Google Scholar

10. M. Ponschab, D. A. Kiefer, and S. J. Rupitsch, “Towards an inverse characterization of third order elastic constants using guided waves,” in 2019 IEEE International Ultrasonics Symposium (IUS), (Piscataway, NJ), pp. 1264–1268, IEEE, 2019.10.1109/ULTSYM.2019.8926294Suche in Google Scholar

11. P. Kudela, M. Radzienski, P. Fiborek, and T. Wandowski, “Elastic constants identification of fibre-reinforced composites by using guided wave dispersion curves and genetic algorithm for improved simulations,” Composite Structures, vol. 272, p. 114178, 2021.10.1016/j.compstruct.2021.114178Suche in Google Scholar

12. D. Pereira and P. Belanger, “Inverse characterization of adhesive shear modulus in bonded stiffeners using ultrasonic guided waves,” AIP Conference Proceedings, p. 050006, 2019.10.1063/1.5099772Suche in Google Scholar

13. C. Grunsteidl, J. Roither, I. A. Veres, B. Reitinger, T. Berer, H. Grun, P. Burgholzer, H. Kostenbauer, J. Winkler, and H. Traxler, “Characterization of thin layers using a frequency domain laser-ultrasonic system,” in 2012 IEEE International Ultrasonics Symposium, (Piscataway, NJ), pp. 1734–1737, IEEE, 2012.10.1109/ULTSYM.2012.0435Suche in Google Scholar

14. M. Castaings and B. Hosten, “Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates,” NDT & E International, vol. 34, no. 4, pp. 249–258, 2001.10.1016/S0963-8695(00)00065-7Suche in Google Scholar

15. T. Wandowski, D. Mindykowski, P. Kudela, and M. Radzienski, “Analysis of air-coupled transducer-based elastic waves generation in cfrp plates,” Sensors, vol. 21, no. 21, 2021.10.3390/s21217134Suche in Google Scholar PubMed PubMed Central

16. A. Jäger, J. Hinrichs, G. Allevato, M. S. K. Sachsenweger, D. Stasevich, W. Gebhard, G. Hübschen, T. Hahn-Jose, W. M. D. Wright, and M. Kupnik, “Non-contact ultrasound with optimum electronic steering angle to excite lamb waves in thin metal sheets for mechanical stress measurements,” in 2019 IEEE International Ultrasonics Symposium (IUS), pp. 924–927, 2019.10.1109/ULTSYM.2019.8925900Suche in Google Scholar

17. Z. Guo, J. D. Achenbach, and S. Krishnaswamy, “EMAT generation and laser detection of single Lamb wave modes,” Ultrasonics, vol. 35, no. 6, pp. 423–429, 1997.10.1007/978-1-4615-5339-7_25Suche in Google Scholar

18. I. Bartoli, A. Marzani, F. Di Lanza Scalea, and E. Viola, “Modeling wave propagation in damped waveguides of arbitrary cross-section,” Journal of Sound and Vibration, vol. 295, no. 3-5, pp. 685–707, 2006.10.1117/12.640032Suche in Google Scholar

19. F. Bause, J. Rautenberg, N. Feldmann, M. Webersen, L. Claes, H. Gravenkamp, and B. Henning, “Ultrasonic transmission measurements in the characterization of viscoelasticity utilizing polymeric waveguides,” Measurement Science and Technology, vol. 27, no. 10, 2016.10.1088/0957-0233/27/10/105601Suche in Google Scholar

20. M. Kersemans, A. Martens, J. Degrieck, K. van den Abeele, S. Delrue, L. Pyl, F. Zastavnik, H. Sol, and W. van Paepegem, “The ultrasonic polar scan for composite characterization and damage assessment: Past, present and future,” Applied Sciences, vol. 6, no. 2, p. 58, 2016.10.3390/app6020058Suche in Google Scholar

21. A. Martens, M. Kersemans, J. Daemen, E. Verboven, W. van Paepegem, S. Delrue, and K. van den Abeele, “Characterization of the orthotropic viscoelastic tensor of composites using the ultrasonic polar scan,” Composite Structures, vol. 230, p. 111499, 2019.10.1016/j.compstruct.2019.111499Suche in Google Scholar

22. Zaber Technologies, “X-LSM-E Series Datasheet.”Suche in Google Scholar

23. A. G. Bell, “Upon the production and reproduction of sound by light,” Journal of the Society of Telegraph Engineers, vol. 9, no. 34, pp. 404–426, 1880.10.1049/jste-1.1880.0046Suche in Google Scholar

24. F. Bause, J. Rautenberg, and B. Henning, “Design, modeling and identification of an ultrasonic composite transducer for target impedance independent short pulse generation,” 16. Internationaler Kongress für Sensoren und Messtechnik (Sensor 2013), Nürnberg, 14.–16.05.2013, 2013.10.5162/sensor2013/A3.2Suche in Google Scholar

25. Femto Messtechnik GmbH, High Frequency Charge Amplifier, 2012.Suche in Google Scholar

26. TiePie engineering, Handyscope HS5, 2021.Suche in Google Scholar

27. S. Johannesmann, L. Claes, M. Webersen, and B. Henning, “Inverser Ansatz zur akustischen Charakterisierung plattenförmiger Materialproben,” in Deutsche Gesellschaft für Akustik e. V. 2017– Fortschritte der Akustik // Fortschritte der Akustik – DAGA 2017, (Berlin, pp. 999–1002, Deutsche Gesellschaft für Akustik e. V. (DEGA), 2017.Suche in Google Scholar

28. Mitutoyo GmbH, Digital Micrometer, 2021.Suche in Google Scholar

29. L. Claes, A. Jäger, S. Johannesmann, M. Webersen, M. Kupnik, and B. Henning, “Acoustic material characterization of additively manufactured components,” in Proceedings – AMA Conferences 2017 (AMA Service GmbH, ed.), pp. 605–610, 2017.10.5162/sensor2017/P2.9Suche in Google Scholar

30. L. Claes, H. Schmiegel, C. Grünsteidl, S. Johannesmann, M. Webersen, and B. Henning, “Investigating peculiarities of piezoelectric detection methods for acoustic plate waves in material characterisation applications,” tm – Technisches Messen, vol. 88, no. 3, 2021.10.1515/teme-2020-0098Suche in Google Scholar

31. L. Bergmann, Der Ultraschall: und seine Anwendung in Wissenschaft und Technik. 1954.Suche in Google Scholar

32. B. A. Auld, Acoustic fields and waves in solids, vol. 1. Malabar, Florida: Krieger Publishing Company, 2 ed., 1990.Suche in Google Scholar

33. N. Bochud, Q. Vallet, Y. Bala, H. Follet, J.-G. Minonzio, and P. Laugier, “Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization,” Physics in Medicine and Biology, vol. 61, no. 19, pp. 6953–6974, 2016.10.1088/0031-9155/61/19/6953Suche in Google Scholar PubMed

34. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer journal, vol. 7, no. 4, pp. 308–313, 1965.10.1093/comjnl/7.4.308Suche in Google Scholar

35. N. Feldmann, F. Bause, and B. Henning, “Uncertainty estimation for linearised inverse problems comparing Bayesian inference and a pseudoinverse approach for acoustic transmission measurements,” tm – Technisches Messen, vol. 84, no. 4, pp. 217–224, 2017.10.1515/teme-2016-0022Suche in Google Scholar

36. F. Bause, Ein ultraschallbasiertes inverses Messverfahren zur Charakterisierung viskoelastischer Materialparameter von Polymeren. Dissertation, Universität Paderborn, 2016.10.5162/sensoren2016/5.3.1Suche in Google Scholar

37. F. P. Mechel and M. L. Munjal, Formulas of acoustics. Berlin: Springer, 2 ed., 2008.10.1007/978-3-540-76833-3Suche in Google Scholar

38. P. S. Theocaris and D. P. Sokolis, “Spectral decomposition of the compliance tensor for anisotropic plates,” Journal of Elasticity, vol. 51, no. 2, pp. 89–103, 1998.10.1023/A:1007549729716Suche in Google Scholar

39. CWFG mbH, “CAMPUS Datasheet, CELAPEX CL 100G-PEEK.”Suche in Google Scholar

40. Chemical Retrieval on the Web (CROW), “Polymer properties database,” 2015–2021.Suche in Google Scholar

41. R. Storn and K. Price, “Differential evolution,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.10.1023/A:1008202821328Suche in Google Scholar

42. H. Überall, B. Hosten, M. Deschamps, and A. Gérard, “Repulsion of phase–velocity dispersion curves and the nature of plate vibrations,” The Journal of the Acoustical Society of America, vol. 96, no. 2, pp. 908–917, 1994.10.1121/1.411434Suche in Google Scholar

43. M. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives,” Technical Report, Department of Applied Mathematics and Theoretical Physics, Jan. 2009.Suche in Google Scholar

44. S. Johannesmann, L. Claes, and B. Henning, “Lamb wave based approach to the determination of elastic and viscoelastic material parameters,” tm – Technisches Messen, vol. 88, no. s1, pp. s28–s33, 2021.10.1515/teme-2021-0070Suche in Google Scholar

45. D. Dreiling, D. Itner, N. Feldmann, C. Scheidemann, H. Gravenkamp, and B. Henning, “Application and modelling of ultrasonic transducers using 1–3 piezoelectric composites with structured electrodes,” in DAGA 2021 – 47. Jahrestagung für Akustik (Deutsche Gesellschaft für Akustik e. V., ed.), (Berlin), pp. 83–86, Deutsche Gesellschaft für Akustik e. V. (DEGA), 2021.Suche in Google Scholar

46. Centroplast Engineering Plastics GmbH, Technisches Datenblatt CENTROPEEK/PEEK.Suche in Google Scholar

47. Quadrant Enginneering Plastic Products, Ketron 1000 PEEK.Suche in Google Scholar

Received: 2021-12-16
Accepted: 2022-03-28
Published Online: 2022-04-12
Published in Print: 2022-07-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0134/html
Button zum nach oben scrollen