Home Metrological nanopositioning combined with two-photon direct laser writing
Article
Licensed
Unlicensed Requires Authentication

Metrological nanopositioning combined with two-photon direct laser writing

  • Laura Mohr-Weidenfeller

    Dr.-Ing. Laura Mohr-Weidenfeller is postdoctoral researcher at the Institute for Micro- and Nanotechnologies (IMN) MacroNano® at the Ilmenau University of Technology. Main research activities: two-photon direct laser writing, micro-and nanofabrication, silicon-ceramic composite substrates.

    EMAIL logo
    , Martin Hofmann

    Dr.-Ing. Martin Hofmann is postdoctoral researcher at the Institute for Micro- and Nanotechnologies (IMN) MacroNano® at the Ilmenau University of Technology. Main research activities: field-emission scanning probe lithography, micro-and nanofabrication.

    , Oliver Birli

    Dipl.-Ing. Oliver Birli is researcher at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: nanometrology, nanopositioning and nanomeasuring.

    , Annika-Verena Häcker

    Annika-Verena Häcker is doctoral researcher at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: two-photon direct laser writing, nanopositioning and nanomeasuring, controlling.

    , Carsten Reinhardt

    Prof. Dr. rer. nat. Carsten Reinhardt is Head of the Department of Applied Physics and Photonics at Bremen University of Applied Sciences. Main research activities: two-photon direct laser writing, nanophotonics, fiber optics, metamaterials, plasmonics.

    and Eberhard Manske

    Prof. Dr.-Ing. habil. Eberhard Manske is head of department at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: laserinterferometric measurement and sensor technology, nanopositioning and nanomeasuring.

Published/Copyright: April 14, 2022

Abstract

The extension of nanopositioning and nanomeasuring machines (NPM-machines) to fabrication machines by using a femtosecond laser for the implementation of direct laser writing by means of two-photon absorption (2PA) is a promising approach for cross-scale metrological fabrication in the field of lithographic techniques [24]. To this end, a concept for integrating two-photon technology into an NPM machine was developed and implemented, followed by a characterization of the system and targeted investigations to provide evidence for the synergy of the two techniques. On this basis, a new approach to high-throughput micro- and nano-fabrication was developed and investigated, demonstrating new possibilities in cross-scale, high-precision manufacturing [6]. This mix-and-match approach is based on a combination of 2PA laser writing with field emission lithography to fabricate masters for subsequent nanoimprint lithography. Not only the advantages of the large positioning range of the NMM-1 could be highlighted, but also the advantages resulting from the highly accurate positioning. A systematic reduction of the distance between two adjacent lines resulted in a minimum photoresist width of less than 30 nm [16], which can be classified among the smallest distances between two laser-written lines described in the literature [4], [10], [20]. The center-to-center distance of the lines of about 1.695 µm at a numerical aperture of 0.16 and a wavelength of 801 nm is only about 56 % of the Rayleigh diffraction limit extended for the two-photon process. Thus, for the first time, a resist width far below the diffraction limit could be realized with conventional two-photon laser writing in positive photoresist.

Zusammenfassung

Die Erweiterung von Nanopositionier- und Nanomessmaschinen (NPM-Maschinen) zu Fabrikationsmaschinen durch den Einsatz eines Femtosekundenlasers zur Realisierung des direkten Laserschreibens mittels Zwei-Photonen-Absorption (2PA) ist ein vielversprechender Ansatz für die skalenübergreifende Fertigung im Bereich der lithografischen Techniken [24]. Zu diesem Zweck wurde ein Konzept für die Integration der Zwei-Photonen-Technologie in eine NPM-Maschine entwickelt und implementiert, gefolgt von einer Charakterisierung des Systems und gezielten Untersuchungen, um die Synergie der beiden Techniken nachzuweisen. Auf dieser Grundlage wurde ein neuer Ansatz für Mikro- und Nanofabrikation mit hohem Durchsatz entwickelt und untersucht, was neue Möglichkeiten in der skalenübergreifenden und hochpräzisen Fertigung aufzeigt [6]. Dieser Mix-and-Match-Ansatz basiert auf einer Kombination aus 2PA-Laserschreiben mit Feldemissionslithographie zur Herstellung von Vorlagen für die anschließende Nanoimprint-Lithographie. Nicht nur die Vorteile des großen Positionierbereichs des NMM-1 können dadurch demonstriert werden, sondern auch die Vorteile die sich aus der hochgenauen Positionierung ergeben. Eine systematische Verringerung des Abstands zwischen zwei benachbarten Linien führte zu einer minimalen Photoresistbreite von weniger als 30 nm [16], die zu den kleinsten Abständen zwischen zwei lasergeschriebenen Linien zugeordnet werden können [4], [10], [20]. Der Abstand der Linien von etwa 1,695 μm bei einer numerischen Apertur von 0,16 und einer Wellenlänge von 801 nm beträgt nur etwa 56 % der für den Zwei-Photonen-Prozess erweiterten Rayleigh-Beugungsgrenze. Nach unserem besten Wissen wurde zum ersten Mal eine Resistbreite weit unterhalb der Beugungsgrenze mit konventionellem Zwei-Photonen-Laserschreiben in positivem Photoresist realisiert.

Award Identifier / Grant number: MU 3171/2-1 + 6-1

Award Identifier / Grant number: SCHA 632/19-1 + 27-1

Award Identifier / Grant number: HO 2284/4-1 + 12-1

Award Identifier / Grant number: GRK 2182

Funding statement: Support by the Center of Micro- and Nanotechnologies (ZMN) (DFG RIsources reference: RI00009), a DFG-funded core facility (Grant No. MU 3171/2-1 + 6-1, SCHA 632/19-1 + 27-1, HO 2284/4-1 + 12-1) of the TU Ilmenau, is gratefully acknowledged. The authors gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, http://dx.doi.org/10.13039/501100001659) in the framework of Research Training Group “Tip- and laser-based 3D Nanofabrication in extended macroscopic working areas” (GRK 2182) at the Technische Universität Ilmenau, Germany.

About the authors

Laura Mohr-Weidenfeller

Dr.-Ing. Laura Mohr-Weidenfeller is postdoctoral researcher at the Institute for Micro- and Nanotechnologies (IMN) MacroNano® at the Ilmenau University of Technology. Main research activities: two-photon direct laser writing, micro-and nanofabrication, silicon-ceramic composite substrates.

Martin Hofmann

Dr.-Ing. Martin Hofmann is postdoctoral researcher at the Institute for Micro- and Nanotechnologies (IMN) MacroNano® at the Ilmenau University of Technology. Main research activities: field-emission scanning probe lithography, micro-and nanofabrication.

Oliver Birli

Dipl.-Ing. Oliver Birli is researcher at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: nanometrology, nanopositioning and nanomeasuring.

Annika-Verena Häcker

Annika-Verena Häcker is doctoral researcher at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: two-photon direct laser writing, nanopositioning and nanomeasuring, controlling.

Carsten Reinhardt

Prof. Dr. rer. nat. Carsten Reinhardt is Head of the Department of Applied Physics and Photonics at Bremen University of Applied Sciences. Main research activities: two-photon direct laser writing, nanophotonics, fiber optics, metamaterials, plasmonics.

Eberhard Manske

Prof. Dr.-Ing. habil. Eberhard Manske is head of department at the Institute for Process Measurement and Sensor Technology at the Ilmenau University of Technology. Main research activities: laserinterferometric measurement and sensor technology, nanopositioning and nanomeasuring.

References

1. F. G. Balzer, Entwicklung und Untersuchungen zur 3-D-Nanopositioniertechnik in großen Bewegungsbereichen, Ph. D. thesis, Technische Universität Ilmenau, 2015.Search in Google Scholar

2. W. Demtröder, Experimentalphysik 2: Elektrizität und Optik, 6th ed., Springer Spektrum, Berlin Heidelberg, 2018.10.1007/978-3-662-54847-9Search in Google Scholar

3. J. Fischer and M. Wegener, Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy, Optical Materials Express 1 (2011), 614–624.10.1364/OME.1.000614Search in Google Scholar

4. Z. Gan, Y. Cao, R. A. Evans and M. Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size, Nature communications 4 (2013), 1–7.10.1038/ncomms3061Search in Google Scholar PubMed

5. T. Hausotte, Nanopositionier- und Nanomessmaschine, Ph. D. thesis, Technische Universität Ilmenau, 2002.Search in Google Scholar

6. M. Hofmann, L. Weidenfeller, S. Supreeti, S. Mechold, M. Holz, C. Reuter, S. Sinzinger, E. Manske and I. W. Rangelow, Mix-and-match lithography and cryogenic etching for NIL template fabrication, Microelectronic Engineering 224 (2020), 111234.10.1016/j.mee.2020.111234Search in Google Scholar

7. G. Jäger, Precision distance measurement by means of miniaturized interferometers, in: XIII IMEKO World Congress. 1994, Torino, Italy, 5–9 September, 1994.Search in Google Scholar

8. G. Jäger, E. Manske and T. Hausotte, The Metrological Basis and Operation of Nanopositioning and Nanomeasuring Machine NMM-1. Metrologische Grundlagen und Wirkungsweise der Nanopositionier- und Messmaschine NMM-1, tm – Technisches Messen Plattform für Methoden, Systeme und Anwendungen der Messtechnik 76 (2009), 227–234.10.1524/teme.2009.0960Search in Google Scholar

9. G. Jäger, E. Manske, T. Hausotte, A. Müller and F. G. Balzer, Nanopositioning and nanomeasuring machine NPMM-200—a new powerful tool for large-range micro-and nanotechnology, Surface Topography: Metrology and Properties 4 (2016), 034004.10.1088/2051-672X/4/3/034004Search in Google Scholar

10. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa and H. Misawa, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnology 16 (2005), 846–849.10.1088/0957-4484/16/6/039Search in Google Scholar

11. E. Manske, T. Hausotte, R. Mastylo, N. Hofmann and G. Jäger, Nanopositioning and nanomeasuring machine for high accuracy measuring procedures of small features in large areas, Optical Fabrication, Testing, and Metrology II 5965 (2005), 596509.10.1117/12.624791Search in Google Scholar

12. E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke and G. Jäger, New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes, Measurement Science and Technology 18 (2007), 520–527.10.1088/0957-0233/18/2/S27Search in Google Scholar

13. E. Manske, G. Jäger and T. Hausotte, A Multi-Sensor Approach for Complex and Large-Area Applications in Micro and Nanometrology, NCSLI Measure 7 (2012), 44–50.10.1080/19315775.2012.11721597Search in Google Scholar

14. E. Manske, G. Jäger and T. Hausotte, Recent developments and challenges of nanopositioning and nanomeasuring technology, Measurement Science and Technology 23 (2012), 074001.10.1088/0957-0233/23/7/074001Search in Google Scholar

15. E. Manske, R. Füßl, R. Mastylo, N. Vorbringer-Dorozhovets, O. Birli and G. Jäger, Ongoing trends in precision metrology, particularly in nanopositioning and nanomeasuring technology, TM-Technisches Messen 82 (2015), 359–366.10.1515/teme-2015-0011Search in Google Scholar

16. L. Mohr-Weidenfeller, A.-V. Häcker, C. Reinhardt and E. Manske, Two-Photon Direct Laser Writing Beyond the Diffraction Limit Using the Nanopositioning and Nanomeasuring Machine, Nanomanufacturing and Metrology 4 (2021), 149–155.10.1007/s41871-021-00100-ySearch in Google Scholar

17. V. Paz, M. Emons, K. Obate, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. N. Chichkov, U. Morgner and W. Osten, Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization, Journal of Laser Applications 24 (2012), 042004.10.2351/1.4712151Search in Google Scholar

18. Y. Shimizu, T. Maruyama, S. Nakagawa, Y.-L. Chen, H. Matsukuma and W. Gao, A PD-edge method associated with the laser autocollimation for measurement of a focused laser beam diameter, Measurement Science and Technology 29 (2018), 074006.10.1088/1361-6501/aac0a6Search in Google Scholar

19. H.-B. Sun, S. Matsuo and H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Applied Physics Letters 74 (1999), 786–788.10.1063/1.123367Search in Google Scholar

20. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong and X. Duan, Reduction in feature size of two-photon polymerization using SCR500, Applied Physics Letters 90 (2007), 071106.10.1063/1.2535504Search in Google Scholar

21. L. Weidenfeller, Kombination von zweiphotonenbasiertem direktem Laserschreiben mit großflächiger und hochpräziser Nanopositionierung, 1st ed., Universitätsverlag Ilmenau, 2020.Search in Google Scholar

22. L. Weidenfeller, M. Hofmann, S. Supreeti, S. Mechold, M. Holz, C. Reuter, E. Manske and I. W. Rangelow, Cryogenic etching for pattern transfer into silicon of Mix-and-Match structured resist layers, Microelectronic Engineering 227 (2020), 111325.10.1016/j.mee.2020.111325Search in Google Scholar

23. L. Weidenfeller, R. Schienbein, J. Kirchner, C. Reinhardt and E. Manske, Development of laser positioning system of high accuracy in the nanometer range, in: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XI, San Francisco, 27 January–1 February, 2018, pp. 105440E.Search in Google Scholar

24. L. Weidenfeller, J. Kirchner, M. Hofmann, M. Kühnel, C. Reinhardt, I. W Rangelow and E. Manske, Laser-microfabrication with accurate positioning and metrological traceability, in: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XII, San Francisco, 2–7 February, 2019, pp. 109300L.10.1117/12.2508248Search in Google Scholar

Received: 2021-12-14
Accepted: 2022-03-08
Published Online: 2022-04-14
Published in Print: 2022-07-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/teme-2021-0127/html
Scroll to top button