Startseite Lebenswissenschaften Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy

  • Sree Lalitha , Ranjana W. Minz und Bikash Medhi EMAIL logo
Veröffentlicht/Copyright: 6. Dezember 2017

Abstract

Accumulating experimental data suggests a number of successful drug targets against epilepsy which eventually failed in the clinical setup. Mammalian target of rapamycin inhibitors, multi-drug resistance transporter inhibitors, cyclo-oxygenase-2 inhibitors, statins, etc. are the most promising and well studied among them. Drugs aiming at these targets produced beneficial response in most of the in vitro and in vivo seizure models. However, in certain situations, they have produced differential rather controversial results. Their effects varied with the seizure model, species, time and route of administration, different drugs from the same class, etc. This review emphasises on such drugs which presented with variability in their beneficial effects against seizures and epilepsy. This review critically summarises the preclinical evidence of these targets in the context of seizures and the probable reasons for their variability and clinical failures.

  1. Conflict of interest statement: The authors have no conflict of interest to declare.

References

Aid, S. and Bosetti, F. (2011). Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie 93, 46–51.10.1016/j.biochi.2010.09.009Suche in Google Scholar PubMed

Akman, O., Moshé, S.L., and Galanopoulou, A.S. (2015). Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci. Ther. 21, 181–192.10.1111/cns.12335Suche in Google Scholar PubMed

Akula, K.K., Dhir, A., and Kulkarni, S.K. (2008). Rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor increases pentylenetetrazol seizure threshold in mice: possible involvement of adenosinergic mechanism. Epilepsy Res. 78, 60–70.10.1016/j.eplepsyres.2007.10.008Suche in Google Scholar PubMed

Asadi-Pooya, A.A., Razavizadegan, S.M., Abdi-Ardekani, A., and Sperling, M.R. (2013) Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav. 29, 150–154.10.1016/j.yebeh.2013.07.006Suche in Google Scholar PubMed

Baik, E.J., Kim, E.J., Lee, S.H., and Moon, C. (1999). Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus. Brain Res. 843, 118–129.10.1016/S0006-8993(99)01797-7Suche in Google Scholar PubMed

Bauer, B., Hartz, A.M., Pekcec, A., Toellner, K., Miller, D.S., and Potschka, H. (2008). Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol. Pharmacol. 73, 1444–1453.10.1124/mol.107.041210Suche in Google Scholar PubMed

Bromfield, E.B., Cavazos, J.E., and Sirven, J.I. (2006). Basic Mechanisms Underlying Seizures and Epilepsy (Chapter 1). An Introduction to Epilepsy (West Hartford, CT: American Epilepsy Society).Suche in Google Scholar

Buckmaster, P.S. and Lew, F.H. (2011). Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 31, 2337–2347.10.1523/JNEUROSCI.4852-10.2011Suche in Google Scholar PubMed PubMed Central

Buckmaster, P.S., Ingram, E.A., and Wen, X. (2009). Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy. J. Neurosci. 29, 8259–8269.10.1523/JNEUROSCI.4179-08.2009Suche in Google Scholar PubMed PubMed Central

Chachua, T., Poon, K.L., Yum, M.S., Nesheiwat, L., DeSantis, K., Velíšková, J., and Velíšek, L. (2012). Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats. Epilepsia 53, 2015–2025.10.1111/j.1528-1167.2012.03674.xSuche in Google Scholar PubMed PubMed Central

Cilio, M.R., Sogawa, Y., Cha, B.H., Liu, X., Huang, L.T., and Holmes, G.L. (2003). Long-term effects of status epilepticus in the immature brain are specific for age and model. Epilepsia 44, 518–528.10.1046/j.1528-1157.2003.48802.xSuche in Google Scholar PubMed

Citraro, R., Chimirri, S., Aiello, R., Gallelli, L., Trimboli, F., Britti, D., De Sarro, G., and Russo, E. (2014). Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia 55, 1284–1291.10.1111/epi.12686Suche in Google Scholar PubMed

Citraro, R., Leo, A., Constanti, A., Russo, E., and De Sarro, G. (2016). mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res. 107, 333–343.10.1016/j.phrs.2016.03.039Suche in Google Scholar PubMed

Claycomb, R.J., Hewett, S.J., and Hewett, J.A. (2011). Characterization of the effect of oral rofecoxib treatment on PTZ-induced acute seizures and kindling. Epilepsia 52, 273–283.Suche in Google Scholar

Curia, G., Longo, D., Biagini, G., Jones, R.S.G., and Avoli, M. (2008). The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 172, 143–157.10.1016/j.jneumeth.2008.04.019Suche in Google Scholar PubMed

Das, A., Balan, S., Banerjee, M., and Radhakrishnan, K. (2011). Drug resistance in epilepsy and the ABCB1 gene: the clinical perspective. Ind. J. Hum. Genet. 17(Suppl. 1), S12–S21.Suche in Google Scholar

Desjardins, P., Sauvageau, A., Bouthillier, A., Navarro, D., Hazell, A.S., Rose, C., and Butterworth, R.F. (2003). Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem. Int. 42, 299–303.10.1016/S0197-0186(02)00101-8Suche in Google Scholar PubMed

Dhir, A., Naidu, P.S., and Kulkarni, S.K. (2005). Effect of naproxen, a non-selective cyclooxygenase inhibitor, on pentylenetetrazol-induced kindling in mice. Clin. Exp. Pharmacol. Physiol. 32, 574–584.10.1111/j.1440-1681.2005.04233.xSuche in Google Scholar PubMed

Dhir, A., Naidu, P.S., and Kulkarni, S.K. (2006). Effect of rofecoxib, a cyclo-oxygenase-2 inhibitor, on various biochemical parameters of brain associated with pentylenetetrazol-induced chemical kindling in mice. Fundam. Clin. Pharmacol. 20, 255–261.10.1111/j.1472-8206.2006.00398.xSuche in Google Scholar PubMed

Dhir, A., Naidu, P.S., and Kulkarni, S.K. (2007). Neuroprotective effect of nimesulide, a preferential COX-2 inhibitor, against pentylenetetrazol (PTZ)-induced chemical kindling and associated biochemical parameters in mice. Seizure 16, 691–697.10.1016/j.seizure.2007.05.016Suche in Google Scholar PubMed

Dudek, F.E. (2012). Mechanisms of seizure-induced inflammation of the brain: many possible roles for neuronal COX-2. Epilepsy Curr. 12, 115–117.10.5698/1535-7511-12.3.115Suche in Google Scholar PubMed

French, J.A., Lawson, J.A., Yapici, Z., Ikeda, H., Polster, T., Nabbout, R., Curatolo, P., de Vries, P.J., Dlugos, D.J., Berkowitz, N., et al. (2016). Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163.10.1016/S0140-6736(16)31419-2Suche in Google Scholar PubMed

Funck, V.R., de Oliveira, C.V., Pereira, L.M., Rambo, L.M., Ribeiro, L.R., Royes, L.F., Ferreira, J., Guerra, G.P., Furian, A.F., Oliveira, M.S., et al. (2011). Differential effects of atorvastatin treatment and withdrawal on pentylenetetrazole-induced seizures. Epilepsia 5, 2094–2104.10.1111/j.1528-1167.2011.03261.xSuche in Google Scholar PubMed

Gobbo, O.L. and O’Mara, S.M. (2004). Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 125, 317–327.10.1016/j.neuroscience.2004.01.045Suche in Google Scholar PubMed

Gouder, N., Fritschy, J.M., and Boison, D. (2003). Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia 44, 877–885.10.1046/j.1528-1157.2003.03603.xSuche in Google Scholar PubMed

Hartman, A.L., Santos, P., Dolce, A., and Hardwick, J.M. (2012). The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice. PLoS One 7, e45156.10.1371/journal.pone.0045156Suche in Google Scholar PubMed PubMed Central

Heng, K., Haney, M.M., and Buckmaster, P.S. (2013). High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54, 1535–1541.10.1111/epi.12246Suche in Google Scholar PubMed PubMed Central

Holtman, L., van Vliet, E.A., van Schaik, R., Queiroz, C.M., Aronica, E., and Gorter, J.A. (2009). Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res. 84, 56–66.10.1016/j.eplepsyres.2008.12.006Suche in Google Scholar PubMed

Holtman, L., van Vliet, E.A., Edelbroek, P.M., Aronica, E., and Gorter, J.A. (2010). Cox-2 inhibition can lead to adverse effects in a rat model for temporal lobe epilepsy. Epilepsy Res. 91, 49–56.10.1016/j.eplepsyres.2010.06.011Suche in Google Scholar PubMed

Huang, X., McMahon, J., Yang, J., Shin, D., and Huang, Y. (2012). Rapamycin down-regulates KCC2 expression and increases seizure susceptibility to convulsants in immature rats. Neuroscience 219, 33–47.10.1016/j.neuroscience.2012.05.003Suche in Google Scholar PubMed PubMed Central

Iannetti, P., Spalice, A., and Parisi, P. (2005). Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46, 967–969.10.1111/j.1528-1167.2005.59204.xSuche in Google Scholar PubMed

Iannetti, P., Parisi, P., Spalice, A., Ruggieri, M., and Zara, F. (2009). Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res. 85, 89–95.10.1016/j.eplepsyres.2009.02.014Suche in Google Scholar PubMed

Jambroszyk, M., Tipold, A., and Potschka, H. (2011). Add-on treatment with verapamil in pharmacoresistant canine epilepsy. Epilepsia. 52, 284–291. doi: 10.1111/j.1528-1167.2010.02886.x. Epub 2011 Jan 10.10.1111/j.1528-1167.2010.02886.xSuche in Google Scholar PubMed

Jung, K.H., Chu, K., Lee, S.T., Kim, J., Sinn, D.I., Kim, J.M., Park, D.K., Lee, J.J., Kim, S.U., Kim, M., et al. (2006). Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis. 23, 237–246.10.1016/j.nbd.2006.02.016Suche in Google Scholar PubMed

Kim, H.J., Chung, J.I., Lee, S.H., Jung, Y.S., Moon, C.H., and Baik, E.J. (2008). Involvement of endogenous prostaglandin F2alpha on kainic acid-induced seizure activity through FP receptor: the mechanism of proconvulsant effects of COX-2 inhibitors. Brain Res. 1193, 153–161.10.1016/j.brainres.2007.12.017Suche in Google Scholar PubMed

Köhling, R., Lehmenkükhler, A., Nicholson, C., and Speckmann, E.J. (1993). Superfusion of verapamil on the cerebral cortex does not suppress epileptic discharges due to restricted diffusion (rats, in vivo). Brain Res. 626, 149–155.10.1016/0006-8993(93)90574-7Suche in Google Scholar PubMed

Koppel, B.S. and Harden, C.L. (2014). Gender issues in the neurobiology of epilepsy: a clinical perspective. Neurobiol. Dis. 72, 193–197.10.1016/j.nbd.2014.08.033Suche in Google Scholar PubMed

Kumar, V., Zhang, M.X., Swank, M.W, Kunz, J., and Wu, G.Y. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J. Neurosci. 25, 11288–11299.10.1523/JNEUROSCI.2284-05.2005Suche in Google Scholar PubMed PubMed Central

Kunz, T. and Oliw, E.H. (2001). Nimesulide aggravates kainic acid-induced seizures in the rat. Pharmacol. Toxicol. 88, 271–276.10.1034/j.1600-0773.2001.d01-116.xSuche in Google Scholar PubMed

Kwan, P., Arzimanoglou, A., Berg, A.T., Brodie, M.J., Allen Hauser, W., Mathern, G., Moshé, S.L., Perucca, E., Wiebe, S., and French, J. (2010). Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069–1077.10.1111/j.1528-1167.2009.02397.xSuche in Google Scholar PubMed

Laplante, M. and Mathieu, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274–293.10.1016/j.cell.2012.03.017Suche in Google Scholar PubMed PubMed Central

Lee, J.K., Won, J.S., Singh, A.K., and Singh, I. (2008). Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci. Lett. 440, 260–264.10.1016/j.neulet.2008.05.112Suche in Google Scholar PubMed PubMed Central

Lidster, K., Jefferys, J.G., Blümcke, I., Crunelli, V., Flecknell, P., Frenguelli, B.G., Gray, W.P., Kaminski, R., Pitkänen, A., Ragan, I., et al. (2016). Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J. Neurosci. Methods 15, 2–25.10.1016/j.jneumeth.2015.09.007Suche in Google Scholar PubMed

Löscher, W. (2002). Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol. Sci. 23, 113–118.10.1016/S0165-6147(00)01974-XSuche in Google Scholar PubMed

Löscher, W. and Fiedler, M. (1996). The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylenetetrazol seizure thresholds. Epilepsy Res. 25, 3–10.10.1016/0920-1211(96)00022-8Suche in Google Scholar

Luna-Munguia, H., Orozco-Suarez, S., and Rocha, L. (2011). Effects of high frequency electrical stimulation and R-verapamil on seizure susceptibility and glutamate and GABA release in a model of phenytoin-resistant seizures. Neuropharmacology 61, 807–814.10.1016/j.neuropharm.2011.05.027Suche in Google Scholar

Luszczki, J.J., Trojnar, M.K., Trojnar, M.P., Kimber-Trojnar, Z., Szostakiewicz, B., Zadrozniak, A., Borowicz, K.K., and Czuczwar, S.J. (2007). Effects of three calcium channel antagonists (amlodipine, diltiazem and verapamil) on the protective action of lamotrigine in the mouse maximal electroshock-induced seizure model. Pharmacol. Rep. 59, 672–682.Suche in Google Scholar PubMed

McDaniel, S.S., Rensing, N.R., Thio, L.L., Yamada, K.A., and Wong, M. (2011). The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 52, e7–e11.10.1111/j.1528-1167.2011.02981.xSuche in Google Scholar

McKhann, G.M., II, Wenzel, H.J., Robbins, C.A, Sosunov, A.A., and Schwartzkroin, P.A. (2003). Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience 122, 551–561.10.1016/S0306-4522(03)00562-1Suche in Google Scholar PubMed

Meikle, L., Pollizzi, K., Egnor, A., Kramvis, I., Lane, H., Sahin, M., and Kwiatkowski, D.J. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mtorc1 and akt signaling lead to improved survival and function. J. Neurosci. 28, 5422–5432.10.1523/JNEUROSCI.0955-08.2008Suche in Google Scholar PubMed PubMed Central

Meng, X.F., Yu, J.T., Song, J.H., Chi, S., and Tan, L. (2013). Role of the mTOR signaling pathway in epilepsy. J Neurol Sci. 332, 4–15.10.1016/j.jns.2013.05.029Suche in Google Scholar PubMed

Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901–910.10.1093/jnen/63.9.901Suche in Google Scholar PubMed

Moazzami, K., Emamzadeh-Fard, H., and Shabani, M. (2013). Anticonvulsant effect of atorvastatin on pentylenetetrazole-induced seizure in mice: the role of nitric oxide pathway. Fundam. Clin. Pharmacol. 27, 44–47.10.1111/j.1472-8206.2012.01038.xSuche in Google Scholar PubMed

Moezi, L., Shafaroodi, H., Hassanipour, M., Fakhrzad, A., Hassanpour, S., and Dehpour, A.R. (2012). Chronic administration of atorvastatin induced anti-convulsant effects in mice: the role of nitric oxide. Epilepsy Behav. 23, 399–404.10.1016/j.yebeh.2012.02.001Suche in Google Scholar PubMed

Oliveira, M.S., Furian, A.F., Royes, L.F., Fighera, M.R., Fiorenza, N.G., Castelli, M., Machado, P., Bohrer, D., Veiga, M., Ferreira, J., et al. (2008). Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 79, 14–21.10.1016/j.eplepsyres.2007.12.008Suche in Google Scholar PubMed

Ostendorf, A.P. and Wong, M. (2015). mTOR inhibition in epilepsy: rationale and clinical perspectives. CNS Drugs. 29, 91–99.10.1007/s40263-014-0223-xSuche in Google Scholar PubMed

Paoletti, A.M., Piccirilli, S., Costa, N., Rotiroti, D., Bagetta, G., and Nistico, G. (1998). Systemic administration of N-nitro-L-arginine methyl ester and indomethacin reduced the elevation of brain PGE2 content and prevents seizures and hippocampal damage evoked by Licl and tacrine in rat. Exp. Neurol. 149, 349.10.1006/exnr.1997.6741Suche in Google Scholar

Pati, S. and Alexopoulos, A.V. (2010). Pharmacoresistant epilepsy: from pathogenesis to current and emerging therapies. Cleve. Clin. J. Med. 77, 457–467.10.3949/ccjm.77a.09061Suche in Google Scholar PubMed

Piermartiri, T.C., Vandresen-Filho, S., de Araújo Herculano, B., Martins, W.C., Dal’agnolo, D., Stroeh, E., Carqueja, C.L., Boeck, C.R., and Tasca, C.I. (2009). Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox. Res. 16, 106–115.10.1007/s12640-009-9057-6Suche in Google Scholar PubMed

Pitkanen, A. and Lukasiuk, K. (2011). Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10, 173–186.10.1016/S1474-4422(10)70310-0Suche in Google Scholar

Polascheck, N., Bankstahl, M., and Löscher, W. (2010). The COX-2 inhibitor parecoxib is neuroprotective but not antiepileptogenic in the pilocarpine model of temporal lobe epilepsy. Exp. Neurol. 224, 219–233.10.1016/j.expneurol.2010.03.014Suche in Google Scholar PubMed

Radu, B.M., Epureanu, F.B., Radu, M., Fabene, P.F., and Bertini, G. (2017). Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy. Epilepsy Res. 131, 15–27.10.1016/j.eplepsyres.2017.02.003Suche in Google Scholar PubMed

Rangel, P., Cysneiros, R.M., Arida, R.M., de Albuquerque, M., Colugnati, D.B., Scorza, C.A., Cavalheiro, E.A., and Scorza. F.A. (2005). Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results. Arq. Neuropsiquiatr. 63, 972–976.10.1590/S0004-282X2005000600013Suche in Google Scholar PubMed

Reddy, D.S. (2009). The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res. 85, 1–30.10.1016/j.eplepsyres.2009.02.017Suche in Google Scholar PubMed PubMed Central

Ricciotti, E. and FitzGerald, G.A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000.10.1161/ATVBAHA.110.207449Suche in Google Scholar PubMed PubMed Central

Rojas, A., Jiang, J., Ganesh, T., Yang, M.-S., Lelutiu, N., Gueorguieva, P., and Dingledine, R. (2014). Cyclooxygenase-2 in epilepsy. Epilepsia 55, 17–25.10.1111/epi.12461Suche in Google Scholar PubMed PubMed Central

Russo, E., Donato di Paola, E., Gareri, P., Siniscalchi, A., Labate, A., Gallelli, L., Citraro, R., and De Sarro, G. (2013). Pharmacodynamic potentiation of antiepileptic drugs’ effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice. Pharmacol Res. 70, 1–12.10.1016/j.phrs.2012.12.002Suche in Google Scholar PubMed

Sander, J.W. (2003). The natural history of epilepsy in the era of new antiepileptic drugs and surgical treatment. Epilepsia 44(Suppl. 1), 17–20.10.1046/j.1528-1157.44.s.1.1.xSuche in Google Scholar PubMed

Scharfman, H.E. and MacLusky, N.J. (2014). Sex differences in the neurobiology of epilepsy: a preclinical perspective. Neurobiol. Dis. 72, 180–192.10.1016/j.nbd.2014.07.004Suche in Google Scholar PubMed PubMed Central

Scharfman, H.E., Goodman, J.H., Rigoulot, M.A., Berger, R.E., Walling, S.G., Mercurio, T.C., Stormes, K., and Maclusky, N.J. (2005). Seizure susceptibility in intact and ovariectomized female rats treated with the convulsant pilocarpine. Exp. Neurol. 196, 73–86.10.1016/j.expneurol.2005.07.007Suche in Google Scholar PubMed PubMed Central

Schauwecker, P.E. (2012). Strain differences in seizure-induced cell death following pilocarpine-induced status epilepticus. Neurobiol. Dis. 45, 297–304.10.1016/j.nbd.2011.08.013Suche in Google Scholar PubMed PubMed Central

Schlichtiger, J., Pekcec, A., Bartmann, H., Winter, P., Fuest, C., Soerensen, J., and Potschka, H. (2010). Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. Br. J. Pharmacol. 160, 1062–1071.10.1111/j.1476-5381.2010.00765.xSuche in Google Scholar PubMed PubMed Central

Schmitt, F.C., Dehnicke, C., Merschhemke, M., and Meencke, H.J. (2010). Verapamil attenuates the malignant treatment course in recurrent status epilepticus. Epilepsy Behav. 17, 565–568.10.1016/j.yebeh.2010.01.166Suche in Google Scholar PubMed

Scicchitano, F., Constanti, A., Citraro, R., De Sarro, G., and Russo, E. (2015). Statins and epilepsy: preclinical studies, clinical trials and statin-anticonvulsant drug interactions. Curr. Drug Targets 16, 747–756.10.2174/1389450116666150330114850Suche in Google Scholar PubMed

Sehar, N., Agarwal, N.B., Vohora, D., and Raisuddin, S. (2015). Atorvastatin prevents development of kindling by modulating hippocampal levels of dopamine, glutamate, and GABA in mice. Epilepsy Behav. 42, 48–53.10.1016/j.yebeh.2014.11.011Suche in Google Scholar PubMed

Shafiq, N., Malhotra, S., and Pandhi, P. (2003). Anticonvulsant action of celecoxib (alone and in combination with sub-threshold dose of phenytoin) in electroshock induced convulsions. Methods Find Exp. Clin. Pharmacol. 25, 87–90.10.1358/mf.2003.25.2.723681Suche in Google Scholar PubMed

Shorvon, S.D. (1996). The epidemiology and treatment of chronic and refractory epilepsy. Epilepsia 37, 1–3.10.1111/j.1528-1157.1996.tb06027.xSuche in Google Scholar PubMed

Sierra-Marcos, A., Alvarez, V., Faouzi, M., Burnand, B., and Rossetti, A.O. (2015). Statins are associated with decreased mortality risk after status epilepticus. Eur. J. Neurol. 22, 402–405.10.1111/ene.12428Suche in Google Scholar PubMed

Sliwa, A., Plucinska, G., Bednarczyk, J., and Lukasiuk, K. (2012). Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci. Lett. 509, 105–109.10.1016/j.neulet.2011.12.051Suche in Google Scholar PubMed

Stancu, C. and Sima, A. (2001). Statins: mechanism of action and effects. J. Cell. Mol. Med. 5, 378–387.10.1111/j.1582-4934.2001.tb00172.xSuche in Google Scholar PubMed PubMed Central

Summers, M.A., Moore, J.L., and McAuley J.W. (2004). Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann. Pharmacother. 38, 1631–1634.10.1345/aph.1E068Suche in Google Scholar PubMed

Tang, S.J., Reis, G., Kang, H., Gingras, A.C., Sonenberg, N., and Schuman, E.M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472.10.1073/pnas.012605299Suche in Google Scholar PubMed PubMed Central

van Vliet, E.A., van Schaik, R., Edelbroek, P.M., Redeker, S., Aronica, E., Wadman, W.J., Marchi, N., Vezzani, A., and Gorter, J.A. (2006). Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia 47, 672–680.10.1111/j.1528-1167.2006.00496.xSuche in Google Scholar PubMed

van Vliet, E.A., Zibell, G., Pekcec, A., Schlichtiger, J., Edelbroek, P.M., Holtman, L., Aronica, E., Gorter, J.A., and Potschka, H. (2010). COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58, 404–412.10.1016/j.neuropharm.2009.09.012Suche in Google Scholar PubMed

van Vliet, E.A., Holtman, L., Aronica, E., Schmitz, L.J., Wadman, W.J., and Gorter, J.A. (2011). Atorvastatin treatment during epileptogenesis in a rat model for temporal lobe epilepsy. Epilepsia 52, 1319–1330.10.1111/j.1528-1167.2011.03073.xSuche in Google Scholar PubMed

van Vliet, E.A., Forte, G., Holtman, L., den Burger, J.C., Sinjewel, A., de Vries, H.E., Aronica, E., and Gorter, J.A. (2012). Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia 53, 1254–1263.10.1111/j.1528-1167.2012.03513.xSuche in Google Scholar PubMed

Vezzani, A., French, J., Bartfai, T., and Baram, T.Z. (2011). The role of inflammation in epilepsy. Nat. Rev. Neurol. 7, 31–40.10.1038/nrneurol.2010.178Suche in Google Scholar PubMed PubMed Central

Vitaliti, G., Pavone, P., Mahmood, F., Nunnari, G., and Falsaperla R. (2014). Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: an update of new immune-modulating approaches. Hum. Vaccin. Immunother. 10, 868–875.10.4161/hv.28400Suche in Google Scholar PubMed PubMed Central

Waldner, M., Fantus, D., Solari, M., and Thomson, A.W. (2016). New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br. J. Clin. Pharmacol. 82, 1158–1170.10.1111/bcp.12893Suche in Google Scholar PubMed PubMed Central

Walker, L. and Sills, G.J. (2012). Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr. 12, 8–12.10.5698/1535-7511-12.1.8Suche in Google Scholar PubMed PubMed Central

Weichhart, T. and Säemann, M.D. (2009). The multiple facets of mTOR in immunity. Trends Immunol. 30, 218–226.10.1016/j.it.2009.02.002Suche in Google Scholar PubMed

Wong, M. (2011). Rapamycin for treatment of epilepsy: antiseizure, antiepileptogenic, both, or neither? Epilepsy Currents 11, 66–68.10.5698/1535-7511-11.2.66Suche in Google Scholar PubMed PubMed Central

Wong, M. (2013). Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed. J. 36, 40–50.10.4103/2319-4170.110365Suche in Google Scholar PubMed PubMed Central

Wurpel, J.N. and Iyer, S.N. (1994). Calcium channel blockers verapamil and nimodipine inhibit kindling in adult and immature rats. Epilepsia 35, 443–449.10.1111/j.1528-1157.1994.tb02458.xSuche in Google Scholar PubMed

Xie, C., Sun, J., Qiao, W., Lu, D., Wei, L., Na, M., Song, Y., Hou, X., and Lin, Z. (2011). Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 6, e24966.10.1371/journal.pone.0024966Suche in Google Scholar PubMed PubMed Central

Zeng, L.H., Xu, L., Gutmann, D.H., and Wong, M. (2008). Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex, Ann. Neurol. 63, 444–453.Suche in Google Scholar

Zeng, L.H., Rensing, N.R., and Wong, M. (2009). The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J. Neurosci. 29, 6964–6972.10.1523/JNEUROSCI.0066-09.2009Suche in Google Scholar PubMed PubMed Central

Zeng, L.H., Rensing, N.R., Zhang, B., Gutmann, D.H., Gambello, M.J., and Wong, M. (2011). Tsc2 gene inactivation causes a more severe epilepsy phenotype than tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 20, 445–454.10.1093/hmg/ddq491Suche in Google Scholar PubMed PubMed Central

Zibell, G., Unkruer, B., Pekcec, A., Hartz, A.M., Bauer, B., Miller, D.S., and Potschka, H. (2009). Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 56, 849–855.10.1016/j.neuropharm.2009.01.009Suche in Google Scholar PubMed

Received: 2017-6-21
Accepted: 2017-8-11
Published Online: 2017-12-6
Published in Print: 2018-3-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0043/html
Button zum nach oben scrollen