Abstract
Aluminum–boron alloys with different boron contents have been fabricated using the stir-casting technique. A comparative research was done to determine the optimal radiation shielding parameters for the synthesized metal alloys. The radiation shielding parameters obtained include the linear attenuation coefficient (μ), total mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), effective atomic number (Zeff), electron density number (Neff), and absorbed dose rate (Dr). Theoretical findings were derived using web-based tools, the Phy-X/PSD and Py-MLBUF software, and were interpolated at specific energy levels. Reasonable agreement was observed, and the variance between experimental MAC and theoretical values with relative deviations (|RD|%) were ranged from 1.39 to 8.94 %. The highest values for the fast neutron removal cross-section (FNRC) and the macroscopic cross-section (MRCS), for S5 are 0.104 and 0.119, respectively. The range of H+, He+2, Ti+4, Bi+5, and Dy+3 ions through the investigated alloys was computed with the SRIM Monte Carlo software in a wide energy range from 0.01 to 20 MeV. The ESTAR NIST program calculated the total stopping power (TSP) and range (R) values for electron interactions over the 10−2–103 MeV energy range. At the 20 MeV ions, energy through the investigated alloys target the ascending order of ions range is RBi+5 < RDy+3 < RTi+4 < RHe+2 < RH+. As the electron energy increased, S1, which has the highest density, gave the highest TSP. The CSDA range of the electrons was higher in low density sample.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: M.M.E. Breky: methodology, investigation, formal analysis, validation, writing – original draft; A.M. Abdelmonem: writing – original draft, validation, software, resources, methodology, investigation, formal analysis, conceptualization; M.F. Attallah: conceptualization, validation, resources, project administration, supervision, Writing – review & editing. All authors have read and approved the final manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no competing interest.
-
Research funding: None declared.
-
Data availability: Data will be made available on request.
References
1. International Atomic Energy Agency (IAEA). Safety Assessment for Facilities and Activities, General Safety Requirements No. GSR Part 4. (Rev. 1); IAEA: Vienna, 2016.Suche in Google Scholar
2. Yin, S.; Wang, H.; Wang, S.; Zhang, J.; Zhu, Y. Effect of B2O3 on the Radiation Shielding Performance of Telluride Lead Glass System. Crystals 2022, 12, 178.10.3390/cryst12020178Suche in Google Scholar
3. Olarinoye, I.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M. S. Effect of Ag2O/V2O5 Substitution on the Radiation Shielding Ability of Tellurite Glass System via XCOM Approach and FLUKA Simulations. Phys. Scr. 2021, 96, 065308.10.1088/1402-4896/abf26aSuche in Google Scholar
4. Boonin, K.; Yasaka, P.; Limkitjaroenporn, P.; Rajaramakrishna, R.; Askin, A.; Sayyed, M.; Kothan, S.; Kaewkhao, J. Effect of BaO on Lead Free Zinc Barium Tellurite Glass for Radiation Shielding Materials in Nuclear Application. J. Non-Crystalline Solids 2020, 550, 120386.10.1016/j.jnoncrysol.2020.120386Suche in Google Scholar
5. Al-Buriahi, M. S.; El-Agawany, F.; Sriwunkum, C.; Akyıldırım, H.; Arslan, H.; Tonguç, B. T.; El-Mallawany, R.; Rammah, Y. Influence of Bi2O3/PbO on Nuclear Shielding Characteristics of Lead-Zinc-Tellurite Glasses. Phys. B 2020, 581, 411946.10.1016/j.physb.2019.411946Suche in Google Scholar
6. Al-Buriahi, M.; Singh, V. Comparison of Shielding Properties of Various Marble Concretes Using GEANT4 Simulation and Experimental Data. J. Aust. Ceram. Soc. 2020, 56, 1127.10.1007/s41779-020-00457-1Suche in Google Scholar
7. Al-Hadeethi, Y.; Sayyed, M.; Tijani, S. Gamma Radiation Attenuation Properties of Tellurite Glasses: A Comparative Study. Nucl. Eng. Technol. 2019, 51, 2005.10.1016/j.net.2019.06.014Suche in Google Scholar
8. Kavaz, E.; Tekin, H.; Kilic, G.; Susoy, G. Newly Developed Zinc-Tellurite Glass System: An Experimental Investigation on Impact of Ta2O5 on Nuclear Radiation Shielding Ability. J. Non-Cryst. Solids 2020, 544, 120169.10.1016/j.jnoncrysol.2020.120169Suche in Google Scholar
9. Katubi, K. M.; Kebaili, I.; Alrowaili, Z.; Eke, C.; Olarinoye, I.; Al-Buriahi, M. Gamma Shielding Performance of the Optical B2O3-Based Glass System. Optik 2022, 270, 169914.10.1016/j.ijleo.2022.169914Suche in Google Scholar
10. Al-Buriahi, M. S.; Eke, C.; Alomairy, S.; Yildirim, A.; Alsaeedy, H.; Sriwunkum, C. Radiation Attenuation Properties of Some Commercial Polymers for Advanced Shielding Applications at Low Energies. Polym. Adv. Technol. 2021, 32, 2386.10.1002/pat.5267Suche in Google Scholar
11. Alzahrani, J. S.; Alrowaili, Z.; Saleh, H.; Hammoud, A.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M. Synthesis, Physical and Nuclear Shielding Properties of Novel Pb–Al Alloys. Prog. Nucl. Energy 2021, 142, 103992.10.1016/j.pnucene.2021.103992Suche in Google Scholar
12. Singh, T.; Kaur, A.; Sharma, J.; Singh, P. S. Gamma Rays’ Shielding Parameters for Some Pb–Cu Binary Alloys. Eng. Sci. Technol. 2018, 21, 1078.10.1016/j.jestch.2018.06.012Suche in Google Scholar
13. Almuqrin, A. H.; Jecong, J.; Hila, F.; Balderas, C.; Sayyed, M. Radiation Shielding Properties of Selected Alloys Using EPICS2017 Data Library. Prog. Nucl. Energy 2021, 137, 103748.10.1016/j.pnucene.2021.103748Suche in Google Scholar
14. Cobden, R.; Banbury, A. Aluminium: Physical Properties, Characteristics and Alloys. Training in Aluminium Application Technologies Alcan Banbury, European Aluminium Association: Belgium, Vol. 60, 1994; p 60.Suche in Google Scholar
15. Mansy, M. S.; Lasheen, Y. F.; Breky, M. M.; Selim, Y. Experimental and Theoretical Investigation of Pb–Sb Alloys as a Gamma-Radiation Shielding Material. Radiat. Phys. Chem. 2021, 183, 109416.10.1016/j.radphyschem.2021.109416Suche in Google Scholar
16. Yıldırım, S.; Tugrul, A.; Buyuk, B.; Demir, E. Gamma Attenuation Properties of Some Aluminum Alloys. Acta Phys. Pol. A 2016, 129, 813.10.12693/APhysPolA.129.813Suche in Google Scholar
17. Heriyanto, K.; Sudjadi, U.; Artiani, P.; Rachmadetin, J.; Setyawan, D. Simulation of Neutron Shielding Performance of Al–Cd Alloy for Radioactive Waste Container. IOP Conf. Ser.: Earth Environ. Sci. 2023, 1201, 012012.10.1088/1755-1315/1201/1/012012Suche in Google Scholar
18. Alzahrani, J. S.; Alrowaili, Z.; Olarinoye, I.; Katubi, K. M.; Al-Buriahi, M. Effect of ZnO on Radiation Shielding Performance and Gamma Dose of Boron Silicate Glasses. Silicon 2024, 16, 105.10.1007/s12633-023-02654-6Suche in Google Scholar
19. Bouzekova-Penkova, A.; Miteva, A. Some Aerospace Applications of 7075 (B95) Aluminium Alloy. Aerosp. Res. Bulgaria 2022, 34, 165.10.3897/arb.v34.e15Suche in Google Scholar
20. Li, S. S.; Yue, X.; Li, Q. Y.; Peng, H. L.; Dong, B. X.; Liu, T. S.; Yang, H. Y.; Fan, J.; Shu, S. L.; Qiu, F. Development and Applications of Aluminum Alloys for Aerospace Industry. J. Mater. Res. Technol. 2023, 27, 944.10.1016/j.jmrt.2023.09.274Suche in Google Scholar
21. Shaaban, K. S.; Aloraini, D. A.; Al-Baradi, A. M.; Assem, E. Bi2O3 Reinforced B2O3–SiO2–MgO Glass System: A Characterization Study Through Physical, Mechanical and Gamma Shields Characteristics. Silicon 2025, 17, 1.10.1007/s12633-024-03217-zSuche in Google Scholar
22. Abdel, W. E.; Aloraini, D. A.; Shaaban, K. S. Germanium Magnesium Tellurium Borate Glasses Doped with Thulium Ions for Enhancing the Mechanical and Radiation Shielding Features. Appl. Phys. A 2025, 131, 137.10.1007/s00339-025-08258-8Suche in Google Scholar
23. Mahrous, E. M.; Al-Baradi, A. M.; Shaaban, K. S. Significant Influence of La2O3 Content on Radiation Shielding Characteristics Properties of Bismuth Sodium Borosilicate Glasses. Radiochim. Acta 2024, 112, 1007.10.1515/ract-2024-0307Suche in Google Scholar
24. Shaaban, K. S.; Aloraini, D. A. Spectroscopic Insights: Linear and Nonlinear Properties and Radiation Shielding Characteristics of Titanium-Modified Aluminum Borosilicate Glasses. Mater. Res. Bull. 2025, 184, 113266.10.1016/j.materresbull.2024.113266Suche in Google Scholar
25. Zakaly, H. M.; Aloraini, D. A.; Wahab, E. A.; Issa, S. A.; Tekin, H.; Shaaban, K. S. Synthesis, Physical, Structural, Mechanical, and Nuclear Radiation Shielding Properties in Cerium Dioxide Reinforced Lead-Silicate Glasses. Ceram. Int. 2025, https://doi.org/10.1016/j.ceramint.2025.01.073, In press.Suche in Google Scholar
26. Manohara, S.; Hanagodimath, S.; Thind, K.; Gerward, L. On the Effective Atomic Number and Electron Density: A Comprehensive Set of Formulas for All Types of Materials and Energies Above 1 keV. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 3906.10.1016/j.nimb.2008.06.034Suche in Google Scholar
27. Akkurt, I.; El-Khayatt, A. Effective Atomic Number and Electron Density of Marble Concrete. J. Radioanal. Nucl. Chem. 2013, 295, 633.10.1007/s10967-012-2111-5Suche in Google Scholar
28. Sallam, O.; Madbouly, A.; Elalaily, N.; Ezz-Eldin, F. Physical Properties and Radiation Shielding Parameters of Bismuth Borate Glasses Doped Transition Metals. J. Alloy. Compd. 2020, 843, 156056.10.1016/j.jallcom.2020.156056Suche in Google Scholar
29. Bashter, I. Calculation of Radiation Attenuation Coefficients for Shielding Concretes. Ann. Nucl. Energy 1997, 24, 1389.10.1016/S0306-4549(97)00003-0Suche in Google Scholar
30. Mo, Z.-J.; Hao, Z.-H.; Deng, J.-Z.; Shen, J.; Li, L.; Wu, J.-F.; Hu, F.-X.; Sun, J.-R.; Shen, B.-G. Observation of Giant Magnetocaloric Effect Under Low Magnetic Field in Eu1−xBaxTiO3. J. Alloy. Compd. 2017, 694, 235.10.1016/j.jallcom.2016.09.266Suche in Google Scholar
31. Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P. SRIM–The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818.10.1016/j.nimb.2010.02.091Suche in Google Scholar
32. Berger, M. J.; Coursey, J. S.; Zucker, M. A.; Chang, J. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, Version 1.2.3; National Institute of Standards and Technology: Gaithersburg, MD, 2005. http://physics.nist.gov/Star (accessed 2021-06-05).Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2024-0376).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis