Startseite Investigation of some radiation interaction parameters with aluminum–boron alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of some radiation interaction parameters with aluminum–boron alloys

  • Mohamed M.E. Breky ORCID logo , Ashraf M. Abdelmonem und Mohamed F. Attallah ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. April 2025

Abstract

Aluminum–boron alloys with different boron contents have been fabricated using the stir-casting technique. A comparative research was done to determine the optimal radiation shielding parameters for the synthesized metal alloys. The radiation shielding parameters obtained include the linear attenuation coefficient (μ), total mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), effective atomic number (Zeff), electron density number (Neff), and absorbed dose rate (Dr). Theoretical findings were derived using web-based tools, the Phy-X/PSD and Py-MLBUF software, and were interpolated at specific energy levels. Reasonable agreement was observed, and the variance between experimental MAC and theoretical values with relative deviations (|RD|%) were ranged from 1.39 to 8.94 %. The highest values for the fast neutron removal cross-section (FNRC) and the macroscopic cross-section (MRCS), for S5 are 0.104 and 0.119, respectively. The range of H+, He+2, Ti+4, Bi+5, and Dy+3 ions through the investigated alloys was computed with the SRIM Monte Carlo software in a wide energy range from 0.01 to 20 MeV. The ESTAR NIST program calculated the total stopping power (TSP) and range (R) values for electron interactions over the 10−2–103 MeV energy range. At the 20 MeV ions, energy through the investigated alloys target the ascending order of ions range is RBi+5 < RDy+3 < RTi+4 < RHe+2 < RH+. As the electron energy increased, S1, which has the highest density, gave the highest TSP. The CSDA range of the electrons was higher in low density sample.


Corresponding author: Mohamed F. Attallah, Analytical Chemistry and Control Department, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, 13759 Abu Zaabal, Cairo, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: M.M.E. Breky: methodology, investigation, formal analysis, validation, writing – original draft; A.M. Abdelmonem: writing – original draft, validation, software, resources, methodology, investigation, formal analysis, conceptualization; M.F. Attallah: conceptualization, validation, resources, project administration, supervision, Writing – review & editing. All authors have read and approved the final manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no competing interest.

  6. Research funding: None declared.

  7. Data availability: Data will be made available on request.

References

1. International Atomic Energy Agency (IAEA). Safety Assessment for Facilities and Activities, General Safety Requirements No. GSR Part 4. (Rev. 1); IAEA: Vienna, 2016.Suche in Google Scholar

2. Yin, S.; Wang, H.; Wang, S.; Zhang, J.; Zhu, Y. Effect of B2O3 on the Radiation Shielding Performance of Telluride Lead Glass System. Crystals 2022, 12, 178.10.3390/cryst12020178Suche in Google Scholar

3. Olarinoye, I.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M. S. Effect of Ag2O/V2O5 Substitution on the Radiation Shielding Ability of Tellurite Glass System via XCOM Approach and FLUKA Simulations. Phys. Scr. 2021, 96, 065308.10.1088/1402-4896/abf26aSuche in Google Scholar

4. Boonin, K.; Yasaka, P.; Limkitjaroenporn, P.; Rajaramakrishna, R.; Askin, A.; Sayyed, M.; Kothan, S.; Kaewkhao, J. Effect of BaO on Lead Free Zinc Barium Tellurite Glass for Radiation Shielding Materials in Nuclear Application. J. Non-Crystalline Solids 2020, 550, 120386.10.1016/j.jnoncrysol.2020.120386Suche in Google Scholar

5. Al-Buriahi, M. S.; El-Agawany, F.; Sriwunkum, C.; Akyıldırım, H.; Arslan, H.; Tonguç, B. T.; El-Mallawany, R.; Rammah, Y. Influence of Bi2O3/PbO on Nuclear Shielding Characteristics of Lead-Zinc-Tellurite Glasses. Phys. B 2020, 581, 411946.10.1016/j.physb.2019.411946Suche in Google Scholar

6. Al-Buriahi, M.; Singh, V. Comparison of Shielding Properties of Various Marble Concretes Using GEANT4 Simulation and Experimental Data. J. Aust. Ceram. Soc. 2020, 56, 1127.10.1007/s41779-020-00457-1Suche in Google Scholar

7. Al-Hadeethi, Y.; Sayyed, M.; Tijani, S. Gamma Radiation Attenuation Properties of Tellurite Glasses: A Comparative Study. Nucl. Eng. Technol. 2019, 51, 2005.10.1016/j.net.2019.06.014Suche in Google Scholar

8. Kavaz, E.; Tekin, H.; Kilic, G.; Susoy, G. Newly Developed Zinc-Tellurite Glass System: An Experimental Investigation on Impact of Ta2O5 on Nuclear Radiation Shielding Ability. J. Non-Cryst. Solids 2020, 544, 120169.10.1016/j.jnoncrysol.2020.120169Suche in Google Scholar

9. Katubi, K. M.; Kebaili, I.; Alrowaili, Z.; Eke, C.; Olarinoye, I.; Al-Buriahi, M. Gamma Shielding Performance of the Optical B2O3-Based Glass System. Optik 2022, 270, 169914.10.1016/j.ijleo.2022.169914Suche in Google Scholar

10. Al-Buriahi, M. S.; Eke, C.; Alomairy, S.; Yildirim, A.; Alsaeedy, H.; Sriwunkum, C. Radiation Attenuation Properties of Some Commercial Polymers for Advanced Shielding Applications at Low Energies. Polym. Adv. Technol. 2021, 32, 2386.10.1002/pat.5267Suche in Google Scholar

11. Alzahrani, J. S.; Alrowaili, Z.; Saleh, H.; Hammoud, A.; Alomairy, S.; Sriwunkum, C.; Al-Buriahi, M. Synthesis, Physical and Nuclear Shielding Properties of Novel Pb–Al Alloys. Prog. Nucl. Energy 2021, 142, 103992.10.1016/j.pnucene.2021.103992Suche in Google Scholar

12. Singh, T.; Kaur, A.; Sharma, J.; Singh, P. S. Gamma Rays’ Shielding Parameters for Some Pb–Cu Binary Alloys. Eng. Sci. Technol. 2018, 21, 1078.10.1016/j.jestch.2018.06.012Suche in Google Scholar

13. Almuqrin, A. H.; Jecong, J.; Hila, F.; Balderas, C.; Sayyed, M. Radiation Shielding Properties of Selected Alloys Using EPICS2017 Data Library. Prog. Nucl. Energy 2021, 137, 103748.10.1016/j.pnucene.2021.103748Suche in Google Scholar

14. Cobden, R.; Banbury, A. Aluminium: Physical Properties, Characteristics and Alloys. Training in Aluminium Application Technologies Alcan Banbury, European Aluminium Association: Belgium, Vol. 60, 1994; p 60.Suche in Google Scholar

15. Mansy, M. S.; Lasheen, Y. F.; Breky, M. M.; Selim, Y. Experimental and Theoretical Investigation of Pb–Sb Alloys as a Gamma-Radiation Shielding Material. Radiat. Phys. Chem. 2021, 183, 109416.10.1016/j.radphyschem.2021.109416Suche in Google Scholar

16. Yıldırım, S.; Tugrul, A.; Buyuk, B.; Demir, E. Gamma Attenuation Properties of Some Aluminum Alloys. Acta Phys. Pol. A 2016, 129, 813.10.12693/APhysPolA.129.813Suche in Google Scholar

17. Heriyanto, K.; Sudjadi, U.; Artiani, P.; Rachmadetin, J.; Setyawan, D. Simulation of Neutron Shielding Performance of Al–Cd Alloy for Radioactive Waste Container. IOP Conf. Ser.: Earth Environ. Sci. 2023, 1201, 012012.10.1088/1755-1315/1201/1/012012Suche in Google Scholar

18. Alzahrani, J. S.; Alrowaili, Z.; Olarinoye, I.; Katubi, K. M.; Al-Buriahi, M. Effect of ZnO on Radiation Shielding Performance and Gamma Dose of Boron Silicate Glasses. Silicon 2024, 16, 105.10.1007/s12633-023-02654-6Suche in Google Scholar

19. Bouzekova-Penkova, A.; Miteva, A. Some Aerospace Applications of 7075 (B95) Aluminium Alloy. Aerosp. Res. Bulgaria 2022, 34, 165.10.3897/arb.v34.e15Suche in Google Scholar

20. Li, S. S.; Yue, X.; Li, Q. Y.; Peng, H. L.; Dong, B. X.; Liu, T. S.; Yang, H. Y.; Fan, J.; Shu, S. L.; Qiu, F. Development and Applications of Aluminum Alloys for Aerospace Industry. J. Mater. Res. Technol. 2023, 27, 944.10.1016/j.jmrt.2023.09.274Suche in Google Scholar

21. Shaaban, K. S.; Aloraini, D. A.; Al-Baradi, A. M.; Assem, E. Bi2O3 Reinforced B2O3–SiO2–MgO Glass System: A Characterization Study Through Physical, Mechanical and Gamma Shields Characteristics. Silicon 2025, 17, 1.10.1007/s12633-024-03217-zSuche in Google Scholar

22. Abdel, W. E.; Aloraini, D. A.; Shaaban, K. S. Germanium Magnesium Tellurium Borate Glasses Doped with Thulium Ions for Enhancing the Mechanical and Radiation Shielding Features. Appl. Phys. A 2025, 131, 137.10.1007/s00339-025-08258-8Suche in Google Scholar

23. Mahrous, E. M.; Al-Baradi, A. M.; Shaaban, K. S. Significant Influence of La2O3 Content on Radiation Shielding Characteristics Properties of Bismuth Sodium Borosilicate Glasses. Radiochim. Acta 2024, 112, 1007.10.1515/ract-2024-0307Suche in Google Scholar

24. Shaaban, K. S.; Aloraini, D. A. Spectroscopic Insights: Linear and Nonlinear Properties and Radiation Shielding Characteristics of Titanium-Modified Aluminum Borosilicate Glasses. Mater. Res. Bull. 2025, 184, 113266.10.1016/j.materresbull.2024.113266Suche in Google Scholar

25. Zakaly, H. M.; Aloraini, D. A.; Wahab, E. A.; Issa, S. A.; Tekin, H.; Shaaban, K. S. Synthesis, Physical, Structural, Mechanical, and Nuclear Radiation Shielding Properties in Cerium Dioxide Reinforced Lead-Silicate Glasses. Ceram. Int. 2025, https://doi.org/10.1016/j.ceramint.2025.01.073, In press.Suche in Google Scholar

26. Manohara, S.; Hanagodimath, S.; Thind, K.; Gerward, L. On the Effective Atomic Number and Electron Density: A Comprehensive Set of Formulas for All Types of Materials and Energies Above 1 keV. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 3906.10.1016/j.nimb.2008.06.034Suche in Google Scholar

27. Akkurt, I.; El-Khayatt, A. Effective Atomic Number and Electron Density of Marble Concrete. J. Radioanal. Nucl. Chem. 2013, 295, 633.10.1007/s10967-012-2111-5Suche in Google Scholar

28. Sallam, O.; Madbouly, A.; Elalaily, N.; Ezz-Eldin, F. Physical Properties and Radiation Shielding Parameters of Bismuth Borate Glasses Doped Transition Metals. J. Alloy. Compd. 2020, 843, 156056.10.1016/j.jallcom.2020.156056Suche in Google Scholar

29. Bashter, I. Calculation of Radiation Attenuation Coefficients for Shielding Concretes. Ann. Nucl. Energy 1997, 24, 1389.10.1016/S0306-4549(97)00003-0Suche in Google Scholar

30. Mo, Z.-J.; Hao, Z.-H.; Deng, J.-Z.; Shen, J.; Li, L.; Wu, J.-F.; Hu, F.-X.; Sun, J.-R.; Shen, B.-G. Observation of Giant Magnetocaloric Effect Under Low Magnetic Field in Eu1−xBaxTiO3. J. Alloy. Compd. 2017, 694, 235.10.1016/j.jallcom.2016.09.266Suche in Google Scholar

31. Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P. SRIM–The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 1818.10.1016/j.nimb.2010.02.091Suche in Google Scholar

32. Berger, M. J.; Coursey, J. S.; Zucker, M. A.; Chang, J. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, Version 1.2.3; National Institute of Standards and Technology: Gaithersburg, MD, 2005. http://physics.nist.gov/Star (accessed 2021-06-05).Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0376).


Received: 2024-12-12
Accepted: 2025-03-22
Published Online: 2025-04-14
Published in Print: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0376/html
Button zum nach oben scrollen