Home The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
Article
Licensed
Unlicensed Requires Authentication

The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations

  • Mahsa Zarei EMAIL logo , Razieh Ghasemi , Mohammad Mir-Derikvand , Hamzeh Hosseinpour , Touran Rabiee Samani and Faezeh Fatemi ORCID logo EMAIL logo
Published/Copyright: April 22, 2025

Abstract

Shewanella azerbaijanica can transfer electrons to uranium in its respiratory system and maintain the efficient growth through bioreduction process. MtrABDEF are some of the main cytochromes involving in Extracellular Electron Transfer of Shewanella. This work attempts to investigate how these genes are affected by various respiratory conditions, and make an effort to enhance their expression through a series of incubations at increasing uranium concentrations. Mtr gene expressions and the uranium removal were analyzed by Real Time RT-PCR and ICP-AES respectively. Uranium threshold concentration, (1 mM uranium for anaerobic electron donor free samples, and 2 mM uranium for electron donor containing samples), the ratio of electron donor to electron acceptor, and the presence of Oxygen, were found to be some of the most important factors affecting the mtr gene expressions during bioreduction. During the acclimation procedure mtr gene expressions were well enhanced, demonstrating that acclimation is a suitable strategy to improve Mtr pathway. Less uranium removal percentage by acclimated bacteria, however, indicates that mtrABDEF are not the most significant agents in bacterial uranium respiration. This work can serve as a model for more advanced research in uranium bioreduction and acclimation-based reduction improvement.


Corresponding authors: Mahsa Zarei, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; and Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran, E-mail: ; and Faezeh Fatemi, Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran, E-mail:
Current affiliation: Faezeh Fatemi, Department of Natural Sciences, Bowie State University, 14000 Jericho Park Rd., Bowie 20715, MD, USA.

Acknowledgments

We thank Dr. Vahideh Tarhriz and Prof. Mohammad Saeid Hejazi (Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran) for isolation, identification and characterization of Shewanella azerbaijanica.

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individual participants included in the study or their legal guardians or ward.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The DNA sequence of genes are available in: https://www.ncbi.nlm.nih.gov/.

References

1. Adeola, A. O.; Iwuozor, K. O.; Akpomie, K. G.; Adegoke, K. A.; Oyedotun, K. O.; Ighalo, J. O.; Amaku, J. F.; Olisah, C.; Conradie, J. Advances in the Management of Radioactive Wastes and Radionuclide Contamination in Environmental Compartments: A Review. Environ. Geochem. Health 2023, 45 (6), 2663–2689; https://doi.org/10.1007/s10653-022-01378-7.Search in Google Scholar PubMed

2. Boodaghi Malidarre, R.; Akkurt, I. Monte Carlo Simulation Study on TeO 2–Bi 2 O–PbO–MgO–B 2 O 3 Glass for Neutron-Gamma 252 Cf Source. J. Mater. Sci.: Mater. Electron. 2021, 32, 11666–11682; https://doi.org/10.1007/s10854-021-05776-y.Search in Google Scholar

3. Korkmaz, A. V.; Hacıfazlıoğlu, H.; Akkurt, İ. Radiation Attenuation Characteristics of Meta-Schist Modified Portland Cement: Comparative Analysis with Traditional Cement. Case Stud. Constr. Mater. 2024, 20, e02737; https://doi.org/10.1016/j.cscm.2023.e02737.Search in Google Scholar

4. Nuray, K. Gamma Ray Shielding Properties of the 57.6 TeO2–38.4 ZnO-4NiO System. Int. J. Comput. Exp. Sci. Eng. 2024, 10 (2), 141–145; https://doi.org/10.22399/ijcesen.310.Search in Google Scholar

5. Akkurt, I. Effective Atomic and Electron Numbers of Some Steels at Different Energies. Ann. Nucl. Energy 2009, 36 (11), 1702–1705; https://doi.org/10.1016/j.anucene.2009.09.005.Search in Google Scholar

6. Abdehvand, A. Z.; Keshtkar, A.; Fatemi, F.; Tarhriz, V.; Hejazi, M. S. Removal of U (VI) from Aqueous Solutions Using Shewanella Sp. RCRI7, Isolated from Qurugöl Lake in Iran. Radiochim. Acta 2017, 105 (2), 109–120; https://doi.org/10.1515/ract-2016-2628.Search in Google Scholar

7. Ghasemi, R.; Fatemi, F.; Mir-Derikvand, M.; Zarei, M. Evaluation of Mtr Cluster Expression in Shewanella RCRI7 during Uranium Removal. Arch. Microbiol. 2020, 202 (10), 2711–2726; https://doi.org/10.1007/s00203-020-01981-1.Search in Google Scholar PubMed

8. Zarei, M.; Fatemi, F.; Ghasemi, R.; Mir-Derikvand, M.; Hosseinpour, H.; Samani, T. R. The Effect of Not-Anaerobicization and Discolored Bacteria on Uranium Reduction by Shewanella Sp. RCRI7. Appl. Radiat. Isot. 2023, 192, 110551; https://doi.org/10.1016/j.apradiso.2022.110551.Search in Google Scholar PubMed

9. Yang, Y.; Kong, G.; Chen, X.; Lian, Y.; Liu, W.; Xu, M. Electricity Generation by Shewanella Decolorationis S12 without Cytochrome C. Front. Microbiol. 2017, 8, 1115; https://doi.org/10.3389/fmicb.2017.01115.Search in Google Scholar PubMed PubMed Central

10. Kouzuma, A.; Kasai, T.; Hirose, A.; Watanabe, K. Catabolic and Regulatory Systems in Shewanella Oneidensis MR-1 Involved in Electricity Generation in Microbial Fuel Cells. Front. Microbiol. 2015, 6, 609; https://doi.org/10.3389/fmicb.2015.00609.Search in Google Scholar PubMed PubMed Central

11. Min, D.; Cheng, L.; Zhang, F.; Huang, X. N.; Liu, D. F.; Lau, T. C.; Mu, Y.; Yu, H. Q. Enhancing Extracellular Electron Transfer of Shewanella Oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environ. Sci. Technol. 2017, 51 (9), 5082–5089; https://doi.org/10.1021/acs.est.6b04640.Search in Google Scholar PubMed

12. Ghasemi, R.; Talebloo, N.; Parsa, P.; Saffarian, P.; Baradaran, S.; Zarei, M.; Fatemi, F. Effects of UV Stress on Shewanella Azerbaijanica Bioremediation Response. Radiochim. Acta 2022; https://doi.org/10.1515/ract-2022-0059.Search in Google Scholar

13. Tarhriz, V.; Hamidi, A.; Rahimi, E.; Eramabadi, M.; Eramabadi, P.; ahaghi, a.; Darian, E.; Hejazi, M. Isolation and Characterization of Naphthalene-Degradation Bacteria from Qurugol Lake Located at Azerbaijan. Biosci. Biotechnol. Res. Asia 2014, 11 (2), 715–722; https://doi.org/10.13005/bbra/1326.Search in Google Scholar

14. Tan, H.; Wang, C.; Zeng, G.; Luo, Y.; Li, H.; Xu, H. Bioreduction and Biosorption of Cr(VI) by a Novel Bacillus Sp. CRB-B1 Strain. J. Hazard. Mater. 2020, 386, 121628; https://doi.org/10.1016/j.jhazmat.2019.121628.Search in Google Scholar PubMed

15. Li, Y.; Wang, H.; Wu, P.; Yu, L.; Rehman, S.; Wang, J.; Yang, S.; Zhu, N. Bioreduction of Hexavalent Chromium on Goethite in the Presence of Pseudomonas Aeruginosa. Environ. Pollut. 2020, 265, 114765; https://doi.org/10.1016/j.envpol.2020.114765.Search in Google Scholar PubMed

16. Borah, S. N.; Goswami, L.; Sen, S.; Sachan, D.; Sarma, H.; Montes, M.; Peralta-Videa, J. R.; Pakshirajan, K.; Narayan, M. Selenite Bioreduction and Biosynthesis of Selenium Nanoparticles by Bacillus Paramycoides SP3 Isolated from Coal Mine Overburden Leachate. Environ. Pollut. 2021, 285, 117519; https://doi.org/10.1016/j.envpol.2021.117519.Search in Google Scholar PubMed

17. Huang, F.-Y.; Zhang, H. L.; Wang, Y. P.; Yi, F. C.; Feng, S.; Huang, H. X.; Cheng, M. X.; Cheng, J.; Yuan, W. J.; Zhang, J. Uranium Speciation and Distribution in Shewanella Putrefaciens and Anaerobic Granular Sludge in the Uranium Immobilization Process. J. Radioanal. Nucl. Chem. 2020, 326, 393–405; https://doi.org/10.1007/s10967-020-07279-2.Search in Google Scholar

18. Liu, J. X.; Xie, S. B.; Wang, Y. H.; Liu, Y. J.; Cai, P. L.; Xiong, F.; Wang, W. T. U (VI) Reduction by Shewanella Oneidensis Mediated by Anthraquinone-2-Sulfonate. Trans. Nonferrous Metals Soc. China 2015, 25 (12), 4144–4150; https://doi.org/10.1016/s1003-6326(15)64080-8.Search in Google Scholar

19. Vettese, G. F.; Morris, K.; Natrajan, L. S.; Shaw, S.; Vitova, T.; Galanzew, J.; Jones, D. L.; Lloyd, J. R. Multiple Lines of Evidence Identify U (V) as a Key Intermediate during U (VI) Reduction by Shewanella Oneidensis MR1. Environ. Sci. Technol. 2020, 54 (4), 2268–2276; https://doi.org/10.1021/acs.est.9b05285.Search in Google Scholar PubMed

20. Ajmal, A. W.; Saroosh, S.; Mulk, S.; Hassan, M. N.; Yasmin, H.; Jabeen, Z.; Nosheen, A.; Shah, S. M. U.; Naz, R.; Hasnain, Z.; Qureshi, T. M.; Waheed, A.; Mumtaz, S. Bacteria Isolated from Wastewater Irrigated Agricultural Soils Adapt to Heavy Metal Toxicity while Maintaining Their Plant Growth Promoting Traits. Sustainability 2021, 13 (14), 7792; https://doi.org/10.3390/su13147792.Search in Google Scholar

21. Samuel, J.; Paul, M. L.; Pulimi, M.; Nirmala, M. J.; Chandrasekaran, N.; Mukherjee, A. Hexavalent Chromium Bioremoval through Adaptation and Consortia Development from Sukinda Chromite Mine Isolates. Ind. Eng. Chem. Res. 2012, 51 (9), 3740–3749; https://doi.org/10.1021/ie201796s.Search in Google Scholar

22. Sundar, K.; Mukherjee, A.; Sadiq, M.; Chandrasekaran, N. Cr (III) Bioremoval Capacities of Indigenous and Adapted Bacterial Strains from Palar River Basin. J. Hazard Mater. 2011, 187 (1-3), 553–561; https://doi.org/10.1016/j.jhazmat.2011.01.077.Search in Google Scholar PubMed

23. Bencheikh-Latmani, R.; Williams, S. M.; Haucke, L.; Criddle, C. S.; Wu, L.; Zhou, J.; Tebo, B. M. Global Transcriptional Profiling of Shewanella Oneidensis MR-1 during Cr (VI) and U (VI) Reduction. Appl. Environ. Microbiol. 2005, 71 (11), 7453–7460; https://doi.org/10.1128/aem.71.11.7453-7460.2005.Search in Google Scholar

24. Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R. Microbial Reduction of Uranium. Nature 1991, 350 (6317), 413; https://doi.org/10.1038/350413a0.Search in Google Scholar

25. Jiang, Y.; Zhang, B.; He, C.; Shi, J.; Borthwick, A. G.; Huang, X. Synchronous Microbial Vanadium (V) Reduction and Denitrification in Groundwater Using Hydrogen as the Sole Electron Donor. Water Res. 2018, 141, 289–296; https://doi.org/10.1016/j.watres.2018.05.033.Search in Google Scholar PubMed

26. Yarzabal, A.; Appia-Ayme, C.; Ratouchniak, J.; Bonnefoy, V. Regulation of the Expression of the Acidithiobacillus Ferrooxidans Rus Operon Encoding Two Cytochromes C, a Cytochrome Oxidase and Rusticyanin. Microbiology 2004, 150 (7), 2113–2123; https://doi.org/10.1099/mic.0.26966-0.Search in Google Scholar PubMed

27. Yarzábal, A.; Duquesne, K.; Bonnefoy, V. Rusticyanin Gene Expression of Acidithiobacillus Ferrooxidans ATCC 33020 in Sulfur-And in Ferrous Iron Media. Hydrometallurgy 2003, 71 (1-2), 107–114; https://doi.org/10.1016/s0304-386x(03)00146-4.Search in Google Scholar

28. McLean, J. S.; Pinchuk, G. E.; Geydebrekht, O. V.; Bilskis, C. L.; Zakrajsek, B. A.; Hill, E. A.; Saffarini, D. A.; Romine, M. F.; Gorby, Y. A.; Fredrickson, J. K.; Beliaev, A. S. Oxygen-dependent Autoaggregation in Shewanella Oneidensis MR-1. Environ. Microbiol. 2008, 10 (7), 1861–1876; https://doi.org/10.1111/j.1462-2920.2008.01608.x.Search in Google Scholar PubMed

29. Reyes, C.; Murphy, J. N.; Saltikov, C. W. Mutational and Gene Expression Analysis of mtrDEF, omcA and mtrCAB during Arsenate and Iron Reduction in Shewanella Sp. ANA-3. Environ. Microbiol. 2010, 12 (7), 1878–1888; https://doi.org/10.1111/j.1462-2920.2010.02192.x.Search in Google Scholar PubMed PubMed Central

30. Barchinger, S. E.; Pirbadian, S.; Sambles, C.; Baker, C. S.; Leung, K. M.; Burroughs, N. J.; El-Naggar, M. Y.; Golbeck, J. H. Regulation of Gene Expression in Shewanella Oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Appl. Environ. Microbiol. 2016, 82 (17), 5428–5443; https://doi.org/10.1128/aem.01615-16.Search in Google Scholar PubMed PubMed Central

31. Jin, M.; Jiang, Y.; Sun, L.; Yin, J.; Fu, H.; Wu, G.; Gao, H. Unique Organizational and Functional Features of the Cytochrome C Maturation System in Shewanella Oneidensis. PloS One 2013, 8 (9), e75610; https://doi.org/10.1371/journal.pone.0075610.Search in Google Scholar PubMed PubMed Central

32. Coursolle, D.; Gralnick, J. A. Reconstruction of Extracellular Respiratory Pathways for Iron (III) Reduction in Shewanella Oneidensis Strain MR-1. Front. Microbiol. 2012, 3, 56; https://doi.org/10.3389/fmicb.2012.00056.Search in Google Scholar PubMed PubMed Central

33. Kasai, T.; Kouzuma, A.; Nojiri, H.; Watanabe, K. Transcriptional Mechanisms for Differential Expression of Outer Membrane Cytochrome Genes omcA and mtrC in Shewanella Oneidensis MR-1. BMC Microbiol. 2015, 15 (1), 68; https://doi.org/10.1186/s12866-015-0406-8.Search in Google Scholar PubMed PubMed Central

34. Wang, H.; Correa, E.; Dunn, W. B.; Winder, C. L.; Goodacre, R.; Lloyd, J. R. Metabolomic Analyses Show that Electron Donor and Acceptor Ratios Control Anaerobic Electron Transfer Pathways in Shewanella Oneidensis. Metabolomics 2013, 9 (3), 642–656; https://doi.org/10.1007/s11306-012-0488-3.Search in Google Scholar

35. Cao, B.; Ahmed, B.; Kennedy, D. W.; Wang, Z.; Shi, L.; Marshall, M. J.; Fredrickson, J. K.; Isern, N. G.; Majors, P. D.; Beyenal, H. Contribution of Extracellular Polymeric Substances from Shewanella Sp. HRCR-1 Biofilms to U (VI) Immobilization. Environ. Sci. Technol. 2011, 45 (13), 5483–5490; https://doi.org/10.1021/es200095j.Search in Google Scholar PubMed

36. Starwalt-Lee, R.; El-Naggar, M. Y.; Bond, D. R.; Gralnick, J. A. Electrolocation? The Evidence for Redox-mediated Taxis in Shewanella Oneidensis. Mol. Microbiol. 2021, 115 (6), 1069–1079; https://doi.org/10.1111/mmi.14647.Search in Google Scholar PubMed

37. Cheng, L.; Min, D.; Liu, D. F.; Li, W. W.; Yu, H. Q. Sensing and Approaching Toxic Arsenate by Shewanella Putrefaciens CN-32. Environ. Sci. Technol. 2019, 53 (24), 14604–14611; https://doi.org/10.1021/acs.est.9b05890.Search in Google Scholar PubMed

38. Harris, H. W.; Sánchez-Andrea, I.; McLean, J. S.; Salas, E. C.; Tran, W.; El-Naggar, M. Y.; Nealson, K. H. Redox Sensing within the Genus Shewanella. Front. Microbiol. 2018, 8, 2568; https://doi.org/10.3389/fmicb.2017.02568.Search in Google Scholar PubMed PubMed Central

39. Xie, J.; Wang, J.; Lin, J.; Zhou, X. The Dynamic Role of pH in Microbial Reduction of Uranium (VI) in the Presence of Bicarbonate. Environ. Pollut. 2018, 242, 659–666; https://doi.org/10.1016/j.envpol.2018.07.021.Search in Google Scholar PubMed

40. Zarei, M.; Mir-Derikvand, M.; Hosseinpour, H.; Samani, T. R.; Ghasemi, R.; Fatemi, F. U (VI) Tolerance Affects Shewanella Sp. RCRI7 Biological Responses: Growth, Morphology and Bioreduction Ability. Arch. Microbiol. 2022, 204 (1), 1–13; https://doi.org/10.1007/s00203-021-02716-6.Search in Google Scholar PubMed

41. Gang, H.; Xiao, C.; Xiao, Y.; Yan, W.; Bai, R.; Ding, R.; Yang, Z.; Zhao, F. Proteomic Analysis of the Reduction and Resistance Mechanisms of Shewanella Oneidensis MR-1 under Long-Term Hexavalent Chromium Stress. Environ. Int. 2019, 127, 94–102; https://doi.org/10.1016/j.envint.2019.03.016.Search in Google Scholar PubMed

42. Xiao, Y.; Xiao, C.; Zhao, F. Long-term Adaptive Evolution of Shewanella Oneidensis MR-1 for Establishment of High Concentration Cr (VI) Tolerance. Front. Environ. Sci. Eng. 2020, 14 (1), 1–11; https://doi.org/10.1007/s11783-019-1182-8.Search in Google Scholar

Received: 2024-11-04
Accepted: 2025-04-10
Published Online: 2025-04-22
Published in Print: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0362/html
Scroll to top button