The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
-
Mahsa Zarei
, Razieh Ghasemi
Abstract
Shewanella azerbaijanica can transfer electrons to uranium in its respiratory system and maintain the efficient growth through bioreduction process. MtrABDEF are some of the main cytochromes involving in Extracellular Electron Transfer of Shewanella. This work attempts to investigate how these genes are affected by various respiratory conditions, and make an effort to enhance their expression through a series of incubations at increasing uranium concentrations. Mtr gene expressions and the uranium removal were analyzed by Real Time RT-PCR and ICP-AES respectively. Uranium threshold concentration, (1 mM uranium for anaerobic electron donor free samples, and 2 mM uranium for electron donor containing samples), the ratio of electron donor to electron acceptor, and the presence of Oxygen, were found to be some of the most important factors affecting the mtr gene expressions during bioreduction. During the acclimation procedure mtr gene expressions were well enhanced, demonstrating that acclimation is a suitable strategy to improve Mtr pathway. Less uranium removal percentage by acclimated bacteria, however, indicates that mtrABDEF are not the most significant agents in bacterial uranium respiration. This work can serve as a model for more advanced research in uranium bioreduction and acclimation-based reduction improvement.
Acknowledgments
We thank Dr. Vahideh Tarhriz and Prof. Mohammad Saeid Hejazi (Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran) for isolation, identification and characterization of Shewanella azerbaijanica.
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individual participants included in the study or their legal guardians or ward.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The DNA sequence of genes are available in: https://www.ncbi.nlm.nih.gov/.
References
1. Adeola, A. O.; Iwuozor, K. O.; Akpomie, K. G.; Adegoke, K. A.; Oyedotun, K. O.; Ighalo, J. O.; Amaku, J. F.; Olisah, C.; Conradie, J. Advances in the Management of Radioactive Wastes and Radionuclide Contamination in Environmental Compartments: A Review. Environ. Geochem. Health 2023, 45 (6), 2663–2689; https://doi.org/10.1007/s10653-022-01378-7.Search in Google Scholar PubMed
2. Boodaghi Malidarre, R.; Akkurt, I. Monte Carlo Simulation Study on TeO 2–Bi 2 O–PbO–MgO–B 2 O 3 Glass for Neutron-Gamma 252 Cf Source. J. Mater. Sci.: Mater. Electron. 2021, 32, 11666–11682; https://doi.org/10.1007/s10854-021-05776-y.Search in Google Scholar
3. Korkmaz, A. V.; Hacıfazlıoğlu, H.; Akkurt, İ. Radiation Attenuation Characteristics of Meta-Schist Modified Portland Cement: Comparative Analysis with Traditional Cement. Case Stud. Constr. Mater. 2024, 20, e02737; https://doi.org/10.1016/j.cscm.2023.e02737.Search in Google Scholar
4. Nuray, K. Gamma Ray Shielding Properties of the 57.6 TeO2–38.4 ZnO-4NiO System. Int. J. Comput. Exp. Sci. Eng. 2024, 10 (2), 141–145; https://doi.org/10.22399/ijcesen.310.Search in Google Scholar
5. Akkurt, I. Effective Atomic and Electron Numbers of Some Steels at Different Energies. Ann. Nucl. Energy 2009, 36 (11), 1702–1705; https://doi.org/10.1016/j.anucene.2009.09.005.Search in Google Scholar
6. Abdehvand, A. Z.; Keshtkar, A.; Fatemi, F.; Tarhriz, V.; Hejazi, M. S. Removal of U (VI) from Aqueous Solutions Using Shewanella Sp. RCRI7, Isolated from Qurugöl Lake in Iran. Radiochim. Acta 2017, 105 (2), 109–120; https://doi.org/10.1515/ract-2016-2628.Search in Google Scholar
7. Ghasemi, R.; Fatemi, F.; Mir-Derikvand, M.; Zarei, M. Evaluation of Mtr Cluster Expression in Shewanella RCRI7 during Uranium Removal. Arch. Microbiol. 2020, 202 (10), 2711–2726; https://doi.org/10.1007/s00203-020-01981-1.Search in Google Scholar PubMed
8. Zarei, M.; Fatemi, F.; Ghasemi, R.; Mir-Derikvand, M.; Hosseinpour, H.; Samani, T. R. The Effect of Not-Anaerobicization and Discolored Bacteria on Uranium Reduction by Shewanella Sp. RCRI7. Appl. Radiat. Isot. 2023, 192, 110551; https://doi.org/10.1016/j.apradiso.2022.110551.Search in Google Scholar PubMed
9. Yang, Y.; Kong, G.; Chen, X.; Lian, Y.; Liu, W.; Xu, M. Electricity Generation by Shewanella Decolorationis S12 without Cytochrome C. Front. Microbiol. 2017, 8, 1115; https://doi.org/10.3389/fmicb.2017.01115.Search in Google Scholar PubMed PubMed Central
10. Kouzuma, A.; Kasai, T.; Hirose, A.; Watanabe, K. Catabolic and Regulatory Systems in Shewanella Oneidensis MR-1 Involved in Electricity Generation in Microbial Fuel Cells. Front. Microbiol. 2015, 6, 609; https://doi.org/10.3389/fmicb.2015.00609.Search in Google Scholar PubMed PubMed Central
11. Min, D.; Cheng, L.; Zhang, F.; Huang, X. N.; Liu, D. F.; Lau, T. C.; Mu, Y.; Yu, H. Q. Enhancing Extracellular Electron Transfer of Shewanella Oneidensis MR-1 through Coupling Improved Flavin Synthesis and Metal-Reducing Conduit for Pollutant Degradation. Environ. Sci. Technol. 2017, 51 (9), 5082–5089; https://doi.org/10.1021/acs.est.6b04640.Search in Google Scholar PubMed
12. Ghasemi, R.; Talebloo, N.; Parsa, P.; Saffarian, P.; Baradaran, S.; Zarei, M.; Fatemi, F. Effects of UV Stress on Shewanella Azerbaijanica Bioremediation Response. Radiochim. Acta 2022; https://doi.org/10.1515/ract-2022-0059.Search in Google Scholar
13. Tarhriz, V.; Hamidi, A.; Rahimi, E.; Eramabadi, M.; Eramabadi, P.; ahaghi, a.; Darian, E.; Hejazi, M. Isolation and Characterization of Naphthalene-Degradation Bacteria from Qurugol Lake Located at Azerbaijan. Biosci. Biotechnol. Res. Asia 2014, 11 (2), 715–722; https://doi.org/10.13005/bbra/1326.Search in Google Scholar
14. Tan, H.; Wang, C.; Zeng, G.; Luo, Y.; Li, H.; Xu, H. Bioreduction and Biosorption of Cr(VI) by a Novel Bacillus Sp. CRB-B1 Strain. J. Hazard. Mater. 2020, 386, 121628; https://doi.org/10.1016/j.jhazmat.2019.121628.Search in Google Scholar PubMed
15. Li, Y.; Wang, H.; Wu, P.; Yu, L.; Rehman, S.; Wang, J.; Yang, S.; Zhu, N. Bioreduction of Hexavalent Chromium on Goethite in the Presence of Pseudomonas Aeruginosa. Environ. Pollut. 2020, 265, 114765; https://doi.org/10.1016/j.envpol.2020.114765.Search in Google Scholar PubMed
16. Borah, S. N.; Goswami, L.; Sen, S.; Sachan, D.; Sarma, H.; Montes, M.; Peralta-Videa, J. R.; Pakshirajan, K.; Narayan, M. Selenite Bioreduction and Biosynthesis of Selenium Nanoparticles by Bacillus Paramycoides SP3 Isolated from Coal Mine Overburden Leachate. Environ. Pollut. 2021, 285, 117519; https://doi.org/10.1016/j.envpol.2021.117519.Search in Google Scholar PubMed
17. Huang, F.-Y.; Zhang, H. L.; Wang, Y. P.; Yi, F. C.; Feng, S.; Huang, H. X.; Cheng, M. X.; Cheng, J.; Yuan, W. J.; Zhang, J. Uranium Speciation and Distribution in Shewanella Putrefaciens and Anaerobic Granular Sludge in the Uranium Immobilization Process. J. Radioanal. Nucl. Chem. 2020, 326, 393–405; https://doi.org/10.1007/s10967-020-07279-2.Search in Google Scholar
18. Liu, J. X.; Xie, S. B.; Wang, Y. H.; Liu, Y. J.; Cai, P. L.; Xiong, F.; Wang, W. T. U (VI) Reduction by Shewanella Oneidensis Mediated by Anthraquinone-2-Sulfonate. Trans. Nonferrous Metals Soc. China 2015, 25 (12), 4144–4150; https://doi.org/10.1016/s1003-6326(15)64080-8.Search in Google Scholar
19. Vettese, G. F.; Morris, K.; Natrajan, L. S.; Shaw, S.; Vitova, T.; Galanzew, J.; Jones, D. L.; Lloyd, J. R. Multiple Lines of Evidence Identify U (V) as a Key Intermediate during U (VI) Reduction by Shewanella Oneidensis MR1. Environ. Sci. Technol. 2020, 54 (4), 2268–2276; https://doi.org/10.1021/acs.est.9b05285.Search in Google Scholar PubMed
20. Ajmal, A. W.; Saroosh, S.; Mulk, S.; Hassan, M. N.; Yasmin, H.; Jabeen, Z.; Nosheen, A.; Shah, S. M. U.; Naz, R.; Hasnain, Z.; Qureshi, T. M.; Waheed, A.; Mumtaz, S. Bacteria Isolated from Wastewater Irrigated Agricultural Soils Adapt to Heavy Metal Toxicity while Maintaining Their Plant Growth Promoting Traits. Sustainability 2021, 13 (14), 7792; https://doi.org/10.3390/su13147792.Search in Google Scholar
21. Samuel, J.; Paul, M. L.; Pulimi, M.; Nirmala, M. J.; Chandrasekaran, N.; Mukherjee, A. Hexavalent Chromium Bioremoval through Adaptation and Consortia Development from Sukinda Chromite Mine Isolates. Ind. Eng. Chem. Res. 2012, 51 (9), 3740–3749; https://doi.org/10.1021/ie201796s.Search in Google Scholar
22. Sundar, K.; Mukherjee, A.; Sadiq, M.; Chandrasekaran, N. Cr (III) Bioremoval Capacities of Indigenous and Adapted Bacterial Strains from Palar River Basin. J. Hazard Mater. 2011, 187 (1-3), 553–561; https://doi.org/10.1016/j.jhazmat.2011.01.077.Search in Google Scholar PubMed
23. Bencheikh-Latmani, R.; Williams, S. M.; Haucke, L.; Criddle, C. S.; Wu, L.; Zhou, J.; Tebo, B. M. Global Transcriptional Profiling of Shewanella Oneidensis MR-1 during Cr (VI) and U (VI) Reduction. Appl. Environ. Microbiol. 2005, 71 (11), 7453–7460; https://doi.org/10.1128/aem.71.11.7453-7460.2005.Search in Google Scholar
24. Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R. Microbial Reduction of Uranium. Nature 1991, 350 (6317), 413; https://doi.org/10.1038/350413a0.Search in Google Scholar
25. Jiang, Y.; Zhang, B.; He, C.; Shi, J.; Borthwick, A. G.; Huang, X. Synchronous Microbial Vanadium (V) Reduction and Denitrification in Groundwater Using Hydrogen as the Sole Electron Donor. Water Res. 2018, 141, 289–296; https://doi.org/10.1016/j.watres.2018.05.033.Search in Google Scholar PubMed
26. Yarzabal, A.; Appia-Ayme, C.; Ratouchniak, J.; Bonnefoy, V. Regulation of the Expression of the Acidithiobacillus Ferrooxidans Rus Operon Encoding Two Cytochromes C, a Cytochrome Oxidase and Rusticyanin. Microbiology 2004, 150 (7), 2113–2123; https://doi.org/10.1099/mic.0.26966-0.Search in Google Scholar PubMed
27. Yarzábal, A.; Duquesne, K.; Bonnefoy, V. Rusticyanin Gene Expression of Acidithiobacillus Ferrooxidans ATCC 33020 in Sulfur-And in Ferrous Iron Media. Hydrometallurgy 2003, 71 (1-2), 107–114; https://doi.org/10.1016/s0304-386x(03)00146-4.Search in Google Scholar
28. McLean, J. S.; Pinchuk, G. E.; Geydebrekht, O. V.; Bilskis, C. L.; Zakrajsek, B. A.; Hill, E. A.; Saffarini, D. A.; Romine, M. F.; Gorby, Y. A.; Fredrickson, J. K.; Beliaev, A. S. Oxygen-dependent Autoaggregation in Shewanella Oneidensis MR-1. Environ. Microbiol. 2008, 10 (7), 1861–1876; https://doi.org/10.1111/j.1462-2920.2008.01608.x.Search in Google Scholar PubMed
29. Reyes, C.; Murphy, J. N.; Saltikov, C. W. Mutational and Gene Expression Analysis of mtrDEF, omcA and mtrCAB during Arsenate and Iron Reduction in Shewanella Sp. ANA-3. Environ. Microbiol. 2010, 12 (7), 1878–1888; https://doi.org/10.1111/j.1462-2920.2010.02192.x.Search in Google Scholar PubMed PubMed Central
30. Barchinger, S. E.; Pirbadian, S.; Sambles, C.; Baker, C. S.; Leung, K. M.; Burroughs, N. J.; El-Naggar, M. Y.; Golbeck, J. H. Regulation of Gene Expression in Shewanella Oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation. Appl. Environ. Microbiol. 2016, 82 (17), 5428–5443; https://doi.org/10.1128/aem.01615-16.Search in Google Scholar PubMed PubMed Central
31. Jin, M.; Jiang, Y.; Sun, L.; Yin, J.; Fu, H.; Wu, G.; Gao, H. Unique Organizational and Functional Features of the Cytochrome C Maturation System in Shewanella Oneidensis. PloS One 2013, 8 (9), e75610; https://doi.org/10.1371/journal.pone.0075610.Search in Google Scholar PubMed PubMed Central
32. Coursolle, D.; Gralnick, J. A. Reconstruction of Extracellular Respiratory Pathways for Iron (III) Reduction in Shewanella Oneidensis Strain MR-1. Front. Microbiol. 2012, 3, 56; https://doi.org/10.3389/fmicb.2012.00056.Search in Google Scholar PubMed PubMed Central
33. Kasai, T.; Kouzuma, A.; Nojiri, H.; Watanabe, K. Transcriptional Mechanisms for Differential Expression of Outer Membrane Cytochrome Genes omcA and mtrC in Shewanella Oneidensis MR-1. BMC Microbiol. 2015, 15 (1), 68; https://doi.org/10.1186/s12866-015-0406-8.Search in Google Scholar PubMed PubMed Central
34. Wang, H.; Correa, E.; Dunn, W. B.; Winder, C. L.; Goodacre, R.; Lloyd, J. R. Metabolomic Analyses Show that Electron Donor and Acceptor Ratios Control Anaerobic Electron Transfer Pathways in Shewanella Oneidensis. Metabolomics 2013, 9 (3), 642–656; https://doi.org/10.1007/s11306-012-0488-3.Search in Google Scholar
35. Cao, B.; Ahmed, B.; Kennedy, D. W.; Wang, Z.; Shi, L.; Marshall, M. J.; Fredrickson, J. K.; Isern, N. G.; Majors, P. D.; Beyenal, H. Contribution of Extracellular Polymeric Substances from Shewanella Sp. HRCR-1 Biofilms to U (VI) Immobilization. Environ. Sci. Technol. 2011, 45 (13), 5483–5490; https://doi.org/10.1021/es200095j.Search in Google Scholar PubMed
36. Starwalt-Lee, R.; El-Naggar, M. Y.; Bond, D. R.; Gralnick, J. A. Electrolocation? The Evidence for Redox-mediated Taxis in Shewanella Oneidensis. Mol. Microbiol. 2021, 115 (6), 1069–1079; https://doi.org/10.1111/mmi.14647.Search in Google Scholar PubMed
37. Cheng, L.; Min, D.; Liu, D. F.; Li, W. W.; Yu, H. Q. Sensing and Approaching Toxic Arsenate by Shewanella Putrefaciens CN-32. Environ. Sci. Technol. 2019, 53 (24), 14604–14611; https://doi.org/10.1021/acs.est.9b05890.Search in Google Scholar PubMed
38. Harris, H. W.; Sánchez-Andrea, I.; McLean, J. S.; Salas, E. C.; Tran, W.; El-Naggar, M. Y.; Nealson, K. H. Redox Sensing within the Genus Shewanella. Front. Microbiol. 2018, 8, 2568; https://doi.org/10.3389/fmicb.2017.02568.Search in Google Scholar PubMed PubMed Central
39. Xie, J.; Wang, J.; Lin, J.; Zhou, X. The Dynamic Role of pH in Microbial Reduction of Uranium (VI) in the Presence of Bicarbonate. Environ. Pollut. 2018, 242, 659–666; https://doi.org/10.1016/j.envpol.2018.07.021.Search in Google Scholar PubMed
40. Zarei, M.; Mir-Derikvand, M.; Hosseinpour, H.; Samani, T. R.; Ghasemi, R.; Fatemi, F. U (VI) Tolerance Affects Shewanella Sp. RCRI7 Biological Responses: Growth, Morphology and Bioreduction Ability. Arch. Microbiol. 2022, 204 (1), 1–13; https://doi.org/10.1007/s00203-021-02716-6.Search in Google Scholar PubMed
41. Gang, H.; Xiao, C.; Xiao, Y.; Yan, W.; Bai, R.; Ding, R.; Yang, Z.; Zhao, F. Proteomic Analysis of the Reduction and Resistance Mechanisms of Shewanella Oneidensis MR-1 under Long-Term Hexavalent Chromium Stress. Environ. Int. 2019, 127, 94–102; https://doi.org/10.1016/j.envint.2019.03.016.Search in Google Scholar PubMed
42. Xiao, Y.; Xiao, C.; Zhao, F. Long-term Adaptive Evolution of Shewanella Oneidensis MR-1 for Establishment of High Concentration Cr (VI) Tolerance. Front. Environ. Sci. Eng. 2020, 14 (1), 1–11; https://doi.org/10.1007/s11783-019-1182-8.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis
Articles in the same Issue
- Frontmatter
- Original Papers
- Synthesis of amide imidazole-based functionalized ionic liquid for separation of Th/Pu
- Measurement of integral cross sections of some neutron induced reactions on rubidium at a TRIGA reactor: comparison with integrated data from evaluated data libraries
- Production and purification of research scale 161Tb using cation-exchange semi-preparative HPLC for radiopharmaceutical applications
- The enhancement of mtrABDEF gene expressions in Shewanella azerbaijanica, through acclimation in high uranium concentrations
- Temporal variation of radon in soil and water in Kosovo
- Investigation of some radiation interaction parameters with aluminum–boron alloys
- Radiation shielding performance of lead-borate glasses with rare-earth oxides: a comparative analysis