Startseite First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions

  • Mikhail V. Ryzhkov ORCID logo EMAIL logo , Andrei N. Enyashin und Bernard Delley
Veröffentlicht/Copyright: 3. Juni 2025

Abstract

The formation of plutonium (III–VI) complexes in nitric and hydrochloric acid solutions was simulated using DMol3 and Relativistic Discrete-Variational (RDV) methods. Both explicit and explicit-plus-implicit approaches for the modeling of solution boundary conditions were used. For the explicit modeling of molecular environment of plutonium ions we used 22 and 32 water molecules and the counter ions NO3 or Cl randomly distributed around actinide atom. For the additional implicit modeling of solvent environment, COSMO potential (Conductor-like Screening Model) for water (ε = 78.54) was used. The original method for the calculation of interaction energies between selected parts of the large multi-atomic systems provides the quantitative comparison of the stability of plutonium complexes with various compositions and the estimation of the roles of NO3, Cl and water molecules of the nearest and next-nearest solution layers. We obtained that the average interaction energies between PuZ+ ion and each nearest H2O molecule were slightly dependent on the size and composition of optimized plutonium complex.


Corresponding author: Mikhail V. Ryzhkov, Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Science, Pervomaiskaya Str. 91, Ekaterinburg 620990, Russia, E-mail:

Funding source: Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences

Award Identifier / Grant number: N 124020600024-5

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was funded by Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences according to the research project N 124020600024-5.

  7. Data availability: Not applicable.

References

1. Langmuir, D. Techniques of Estimating Thermodynamic Properties for Some Aqueous Complexes of Geochemical Interest. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed.; American Chemical Society: Washington, Vol. 93, 1979; pp. 353–387.10.1021/bk-1979-0093.ch018Suche in Google Scholar

2. Cleveland, J. M. Critical Review of Plutonium Equilibria of Environmental Concern. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed.; American Chemical Society: Washington, Vol. 93, 1979; pp. 321–338.10.1021/bk-1979-0093.ch016Suche in Google Scholar

3. Clark, D. L.; Hobart, D. E.; Neu, M. P. Actinide Carbonate Complexes and their Importance in Actinide Environmental Chemistry. Chem. Rev. 1995, 95, 25–48; https://doi.org/10.1021/cr00033a002.Suche in Google Scholar

4. Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. Plutonium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: Dordrecht, Vol. 2, 2010, 4th ed.; pp. 813–1264.10.1007/978-94-007-0211-0_7Suche in Google Scholar

5. Dolg, M., Ed. Computational Methods in Lanthanide and Actinide Chemistry; Wiley: Chichester, 2015.10.1002/9781118688304Suche in Google Scholar

6. Odoh, S. O.; Schreckenbach, G. Theoretical Study of the Structural Properties of Plutonium (IV) and (VI) Complexes. J. Phys. Chem. A 2011, 115, 14110–14119; https://doi.org/10.1021/jp207556b.Suche in Google Scholar PubMed

7. Allen, P. G.; Veirs, D. K.; Conradson, S. D.; Smith, C. A.; Marsh, S. F. Characterization of Aqueous Plutonium (IV) Nitrate Complexes by Extended X-Ray Absorption Fine Structure Spectroscopy. Inorg. Chem. 1996, 35, 2841–2845; https://doi.org/10.1021/ic9511231.Suche in Google Scholar

8. Xiao, C.-L.; Wu, Q.-Y.; Wang, C.-Z.; Zhao, Y.-L.; Chai, Z.-F.; Shi, W.-Q. Quantum Chemistry Study of Uranium (VI), Neptunium (V), and Plutonium (IV, VI) Complexes with Preorganized Tetradentate Phenanthrolineamide Ligands. Inorg. Chem. 2014, 53, 10846–10853; https://doi.org/10.1021/ic500816z.Suche in Google Scholar PubMed

9. Sulka, M.; Cantrel, L.; Vallet, V. Theoretical Study of Plutonium (IV) Complexes Formed within the PUREX Process: a Proposal of a Plutonium Surrogate in Fire Conditions. J. Phys. Chem. A 2014, 118, 10073–10080; https://doi.org/10.1021/jp507684f.Suche in Google Scholar PubMed

10. Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Structural and Spectroscopic Characterization of Plutonium (VI) Nitrate Under Acidic Conditions. Inorg. Chem. 2011, 50, 4244–4246; https://doi.org/10.1021/ic200525u.Suche in Google Scholar PubMed

11. Austin, J. P.; Sundararajan, M.; Vincent, M. A.; Hillier, I. H. The Geometric Structures, Vibrational Frequencies and Redox Properties of the Actinyl Coordination Complexes ([AnO2Ln]m; An = U, Pu, Np; L = H2O, Cl−, CO32−, CH3CO2−, OH−) in Aqueous Solution, Studied by Density Functional Theory Methods. Dalton Trans. 2009, 30, 5902–5909; https://doi.org/10.1039/b901724k.Suche in Google Scholar PubMed

12. Conradson, S. D.; Abney, K. D.; Begg, B. D.; Brady, E. D.; Clark, D. L.; Den, A. C.; Ding, M.; Dorhout, P. K.; Espinosa-Faller, F. J.; Gordon, P. L.; Haire, R. G.; Hess, N. J.; Hess, R. F.; Keogh, D. W.; Lander, G. H.; Lupinetti, A. J.; Morales, L. A.; Neu, M. P.; Palmer, P. D.; Paviet-Hartmann, P.; Reilly, S. D.; Runde, W. H.; Tait, C. D.; Veirs, D. K.; Wastin, F. Higher Order Speciation Effects on Plutonium L3 X-Ray Absorption Near Edge Spectra. Inorg. Chem. 2004, 43, 116–131; https://doi.org/10.1021/ic0346477.Suche in Google Scholar PubMed

13. Yun, J. I.; Cho, H. R.; Neck, V.; Almaier, M.; Seibert, A.; Marquardt, C. M.; Fanghanel, T. Investigation of the Hydrolysis of Plutonium (IV) by a Combination of Spectroscopy and Redox Potential Measurements. Radiochim. Acta 2007, 95, 89–95; https://doi.org/10.1524/ract.2007.95.2.89.Suche in Google Scholar

14. Clark, A. E.; Samuels, A.; Wisuri, K.; Landstrom, S.; Saul, T. Sensitivity of Salvation Environment to Oxidation State and Position in the Early Actinide Period. Inorg. Chem. 2015, 54, 6216–6225; https://doi.org/10.1021/acs.inorgchem.5b00365.Suche in Google Scholar PubMed

15. Parmar, P.; Samuels, A.; Clark, A. E. Applications of Polarizable Continuu, Models to Determine Accurate Solution-Phase Thermochemical Values Across a Broad Range of Cation Charge – The Case of U(III–VI). J. Chem. Theory Comput. 2015, 11, 55–63; https://doi.org/10.1021/ct500530q.Suche in Google Scholar PubMed

16. Ryzhkov, M. V.; Enyashin, A. N.; Delley, B. Plutonium Complexes in Water: New Approach to Ab Initio Modeling. Radiochim. Acta 2021, 109, 327–342; https://doi.org/10.1515/ract-2020-0091.Suche in Google Scholar

17. Ryzhkov, M. V.; Enyashin, A. N.; Delley, B. First-Principles Study on the Plutonium Ions Interaction with Diamide Molecules in Acid Solutions. Int. J Quant. Chem. 2021, 121, 266811–266816; https://doi.org/10.1002/qua.26681.Suche in Google Scholar

18. Delley, B. The Conductor-Like Screening Model for Polymers and Surfaces. Mol. Simul. 2006, 32, 117–123; https://doi.org/10.1080/08927020600589684.Suche in Google Scholar

19. Todorova, T.; Delley, B. Wetting of Paracetamol Surfaces Studied by DMol3-COSMO Calculations. Mol. Simul. 2008, 34, 1013–1017; https://doi.org/10.1080/08927020802235672.Suche in Google Scholar

20. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, I. I. I. W. A.; Skiff, W. M. UFF, A Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035; https://doi.org/10.1021/ja00051a040.Suche in Google Scholar

21. Zhechkov, L.; Heine, T.; Patchkovskii, S.; Seifert, G.; Duarte, H. A. An Efficient A Posteriori treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. J. Chem. Theory Comput. 2005, 1, 841–847; https://doi.org/10.1021/ct050065y.Suche in Google Scholar PubMed

22. Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517; https://doi.org/10.1063/1.458452.Suche in Google Scholar

23. Koelling, D. D.; Harmon, B. N. A Technique for Relativistic Spin-Polarized Calculations. J. Phys. C: Solid State Phys. 1977, 10, 3107–3114; https://doi.org/10.1088/0022-3719/10/16/019.Suche in Google Scholar

24. Perdew, J. P.; Burke, K.; Ernzerhof, M. General Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

25. Hirshfeld, F. L. Accurate Electron-Densities in Molecules. J. Mol. Struct. 1985, 130, 125–141; https://doi.org/10.1016/0022-2860(85)85028-6.Suche in Google Scholar

26. Berthon, C.; Boubals, N.; Charushnikova, I. A.; Collison, D.; Cornet, S. M.; Den, A. C.; Gaunt, A. J.; Kaltsoyannis, N.; May, I.; Petit, S.; Redmond, M. P.; Reilly, S. D.; Scott, B. L. The Reaction Chemistry of Plutonyl (VI) Chloride Complexes with Triphenyl Phosphineoxide and Triphenyl Phisphinimine. Inorg. Chem. 2010, 49, 9554–9562; https://doi.org/10.1021/ic101251a.Suche in Google Scholar PubMed

27. Ryzhkov, M. V.; Kupryazhkin, A. Y. First-Principles Study of Electronic Structure and Insulating Properties of Uranium and Plutonium Dioxides. J. Nucl. Mater. 2009, 384, 226–230; https://doi.org/10.1016/j.jnucmat.2008.11.011.Suche in Google Scholar

28. Rosen, A.; Ellis, D. E. Relativistic Molecular Calculations in the Dirac-Slater Model. J. Chem. Phys. 1975, 62, 3039–3049; https://doi.org/10.1063/1.430892.Suche in Google Scholar

29. Adachi, H. Relativistic Molecular Orbital Theort in the Dirac-Slater Model. Technol. Rep. Osaka Univ. 1977, 27, 569–576.Suche in Google Scholar

30. Ryzhkov, M. V. New Method for Calculating Effective Charges on Atoms in Molecules, Clusters and Solids. J. Struct. Chem. 1998, 39, 933–937; https://doi.org/10.1007/bf02903608.Suche in Google Scholar

31. Mulliken, R. S. Chemical Bonding. Annu. Rev. Phys. Chem. 1978, 29, 1–30; https://doi.org/10.1146/annurev.pc.29.100178.000245.Suche in Google Scholar PubMed

32. Panak, P. J.; Booth, C. H.; Caulder, D. L.; Bucher, J. J.; Shuh, D. K.; Nitsche, H. X-Ray Absorption Fine Structure Spectroscopy of Plutonium Complexes with Bacillus Sphaericus. Radiochim. Acta 2002, 90, 315–321; https://doi.org/10.1524/ract.2002.90.6.315.Suche in Google Scholar

33. Guillaumont, R.; Fanghanel, T.; Fuger, J.; Grenthe, I.; Neck, V.; Palmer, D. A.; Rand, M. H. In Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; Elsevier: Amsterdam, Vol. 5, 2003, 3rd ed.Suche in Google Scholar

Received: 2024-11-30
Accepted: 2025-05-12
Published Online: 2025-06-03
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0372/html
Button zum nach oben scrollen