Abstract
This study investigates the effects of NiO incorporation on the mechanical and radiation shielding properties of xNiO–80P2O5–5Al2O3–(15−x) Li2O glass samples. Density increased from 2.964 for PLANi-0 to 3.654 g/cm3 for PLANi-3 due to the higher atomic mass of NiO compared to Li2O. Molar volume decreased from 41.54 to 34.06 cm3/mol. This suggests that NiO strengthens the glass network, leading to higher compactness and improved mechanical properties. Both longitudinal (VL) and shear (VT) ultrasonic velocities increased from 3,934 to 4,352 and from 1,834 to 2,010 for PLANi-0 and PLANi-3 respectively. The elastic moduli increased with increasing NiO content. The linear attenuation coefficient (LAC) decreases as photon energy (E) increases. At energy of 50 keV, the examined glass samples PLANi-0, PLANi-0.5, PLANi-1, PLANi-2, and PLANi-5 had HVL values of 0.71695, 0.65995, 0.62128, 0.57976, and 0.5317 cm. A denser glass results in more atomic interactions and higher LAC, which directly reduces HVL and MFP. This makes higher-NiO glasses more efficient for radiation protection.
Funding source: Taif University Researchers, Taif University, Taif, Saudi Arabia
Award Identifier / Grant number: TU-DSPP-2024-124
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors express their gratitude Taif University Researchers Supporting Project number (TU-DSPP-2024-124), Taif University, Taif, Saudi Arabia.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Es-soufi, H.; Bih, L. J. Non-Cryst. Solids. 2021, 558, 120655. https://doi.org/10.1016/j.jnoncrysol.2021.120655.Search in Google Scholar
2. El-Maaref, A. A.; Alotaibi, B. M.; Alharbi, N.; El-Rehim, A. F. A.; Shaaban, K. S. J. Inorg. Organomet. Polym. 2022, 32, 3117–3127. https://doi.org/10.1007/s10904-022-02345-6.Search in Google Scholar
3. Basha, B.; Shaaban, K. S.; Abdel Wahab, E. A. Dig. J. Nanomater. Biostruct. 2023, 18 (2), 713–726. https://doi.org/10.15251/DJNB.2023.182.713.Search in Google Scholar
4. Shaaban, K. S.; Al-Baradi, A. M.; Ali, A. M. Silicon 2022, 14, 8971–8979. https://doi.org/10.1007/s12633-022-01702-x.Search in Google Scholar
5. Shaaban, K. S.; Alotaibi, B. M.; Alharbiy, N.; Al-Baradi, A. M.; El-Rehim, A. A. Silicon 2022, 14, 11991–12000. https://doi.org/10.1007/s12633-022-02029-3.Search in Google Scholar
6. Sayyed, M.; Morshidy, H.; Shaaban, K.; El-Rehim, A. A.; Ali, A. M.; Sadeq, M. Opt. Mater. 2023, 144, 114300. https://doi.org/10.1016/j.optmat.2023.114300.Search in Google Scholar
7. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B. M.; Abd El-Rehim, A. F. J. Mater. Res. Technol. 2023, 23, 756–764. https://doi.org/10.1016/j.jmrt.2023.01.062.Search in Google Scholar
8. Sayed, M. A.; Basha, B.; Al-Harbi, N.; Shaaban, K. S. Silicon 2023, 15, 6463–6471. https://doi.org/10.1007/s12633-023-02537-w.Search in Google Scholar
9. Allam, E. A.; El-Sharkawy, R. M.; Shaaban, Kh.S.; El-Taher, A.; Mahmoud, M. E.; El Sayed, Y. Dig. J. Nanomater. Biostruct. 2022, 17 (1), 161. https://doi.org/10.15251/DJNB.2022.171.161.Search in Google Scholar
10. Biradar, S.; Chandrashekara, M.; Dinkar, A.; Devidas, G.; Bennal, A.; Sayyed, M.; Es-soufi, H. Ceram. Int. 2024, 50 (17), 29332–29345. https://doi.org/10.1016/j.ceramint.2024.05.227.Search in Google Scholar
11. Sinouh, H.; Bih, L.; Azrour, M.; El Bouari, A.; Benmokhtar, S.; Manoun, B.; Belhorma, B.; Baudin, T.; Berthet, P.; Haumont, R.; Solas, D. J. Phys. Chem. Solids 2012, 73 (7), 961–968. https://doi.org/10.1016/j.jpcs.2012.03.003.Search in Google Scholar
12. Şakar, E.; Özpolat, Ö. F.; Alım, B.; Sayyed, M. I.; Kurudirek, M.. Radiat. Phys. Chem. 2020, 166, 108496. https://doi.org/10.1016/j.radphyschem.Search in Google Scholar
13. Ouaha, A.; Taoussi, S.; Ouachouo, L.; Hadouch, Y.; Es-soufi, H.; Hoummada, K.; Mezzane, D.; Bih, L. Ceram. Int. 2025, 51 (10), 12600–12616; https://doi.org/10.1016/j.ceramint.2025.01.100.Search in Google Scholar
14. El Batal, F. H.; Abo-Naf, S. M.; Marzouk, S. Y. Philos. Mag. 2011, 91 (3), 341–356. https://doi.org/10.1080/14786435.2010.521491.Search in Google Scholar
15. Sayed, M. A.; Basha, B.; Al-Harbi, N.; Al-Baradi, A. M.; Shaaban, K. S. Eur. Phys. J. Plus 2023, 138, 455. https://doi.org/10.1140/epjp/s13360-023-04079-x.Search in Google Scholar
16. Dahiya, M. S.; Khasa, S.; Agarwal, A. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B. 2016, 57, 45–52. https://doi.org/10.13036/17533562.57.2.023.Search in Google Scholar
17. Attri, V.; Dahiya, M. S.; Hooda, A.; Agarwal, A.; Khasa, S. CNS E Journal 2024, 1 (4), 340–359. https://doi.org/10.63015/5C-2428.1.4.Search in Google Scholar
18. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B.; El-Rehim, A. J. Mater. Res. Technol. 2023, 23, 756–764. https://doi.org/10.1016/j.jmrt.2023.01.062.Search in Google Scholar
19. Makishima, A.; Mackenzie, J. D. Direct Calculations of Young Modulus of Glass. J. Non-Cryst. Solids 1973, 12, 35–45; https://doi.org/10.1016/0022-3093(73)90053-7.Search in Google Scholar
20. Makishima, A.; Mackenzie, J. D. Calculation of Bulk Modulus, Shear Modulus and Poisson’s Ratio of Glass. J. Non-Cryst. Solids 1975, 17, 147–157; https://doi.org/10.1016/0022-3093(75)90047-2.Search in Google Scholar
21. Inaba, S.; Oda, S.; Morinaga, K. Heat Capacity of Oxide Glasses at High Temperature Region. J. Non-Cryst. Solids 2003, 325, 258–266; https://doi.org/10.1016/s0022-3093(03)00315-6.Search in Google Scholar
22. Shaaban, K. S.; Alyousef, H. A.; Alotaibi, B. M.; El-Rehim, A. F. A.; Wahab, E. A. A. J. Inorg. Organomet. Polym. 2022, 32, 4295–4303. https://doi.org/10.1007/s10904-022-02446-2.Search in Google Scholar
23. Shaaban, K. S.; Aloraini, D. A.; Al-Baradi, A. M.; Assem, E. E. Silicon 2025, 17, 615–624; https://doi.org/10.1007/s12633-024-03217-z.Search in Google Scholar
24. Shaaban, K. S.; Aloraini, D. A. Mater. Res. Bull. 2025, 184, 113266. https://doi.org/10.1016/j.materresbull.2024.113266.Search in Google Scholar
25. Abdel Wahab, E. A.; Aloraini, D. A.; Shaaban, K. S. Appl. Phys., A, 2025, 131, 137. https://doi.org/10.1007/s00339-025-08258-8.Search in Google Scholar
26. Zakaly, H. M.; Aloraini, D. A.; Wahab, E. A.; Issa, S. A.; Tekin, H.; Shaaban, K. S. Ceram. Int. 2025, 51 (9), 12207–12217; https://doi.org/10.1016/j.ceramint.2025.01.073.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics
Articles in the same Issue
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics