Abstract
The formation of plutonium (III–VI) complexes in nitric and hydrochloric acid solutions was simulated using DMol3 and Relativistic Discrete-Variational (RDV) methods. Both explicit and explicit-plus-implicit approaches for the modeling of solution boundary conditions were used. For the explicit modeling of molecular environment of plutonium ions we used 22 and 32 water molecules and the counter ions NO3− or Cl− randomly distributed around actinide atom. For the additional implicit modeling of solvent environment, COSMO potential (Conductor-like Screening Model) for water (ε = 78.54) was used. The original method for the calculation of interaction energies between selected parts of the large multi-atomic systems provides the quantitative comparison of the stability of plutonium complexes with various compositions and the estimation of the roles of NO3−, Cl− and water molecules of the nearest and next-nearest solution layers. We obtained that the average interaction energies between PuZ+ ion and each nearest H2O molecule were slightly dependent on the size and composition of optimized plutonium complex.
Funding source: Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences
Award Identifier / Grant number: N 124020600024-5
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was funded by Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences according to the research project N 124020600024-5.
-
Data availability: Not applicable.
References
1. Langmuir, D. Techniques of Estimating Thermodynamic Properties for Some Aqueous Complexes of Geochemical Interest. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed.; American Chemical Society: Washington, Vol. 93, 1979; pp. 353–387.10.1021/bk-1979-0093.ch018Search in Google Scholar
2. Cleveland, J. M. Critical Review of Plutonium Equilibria of Environmental Concern. In Chemical Modeling in Aqueous Systems; ACS Symposium Series; Jenne, E. A., Ed.; American Chemical Society: Washington, Vol. 93, 1979; pp. 321–338.10.1021/bk-1979-0093.ch016Search in Google Scholar
3. Clark, D. L.; Hobart, D. E.; Neu, M. P. Actinide Carbonate Complexes and their Importance in Actinide Environmental Chemistry. Chem. Rev. 1995, 95, 25–48; https://doi.org/10.1021/cr00033a002.Search in Google Scholar
4. Clark, D. L.; Hecker, S. S.; Jarvinen, G. D.; Neu, M. P. Plutonium. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R.; Edelstein, N. M.; Fuger, J., Eds.; Springer: Dordrecht, Vol. 2, 2010, 4th ed.; pp. 813–1264.10.1007/978-94-007-0211-0_7Search in Google Scholar
5. Dolg, M., Ed. Computational Methods in Lanthanide and Actinide Chemistry; Wiley: Chichester, 2015.10.1002/9781118688304Search in Google Scholar
6. Odoh, S. O.; Schreckenbach, G. Theoretical Study of the Structural Properties of Plutonium (IV) and (VI) Complexes. J. Phys. Chem. A 2011, 115, 14110–14119; https://doi.org/10.1021/jp207556b.Search in Google Scholar PubMed
7. Allen, P. G.; Veirs, D. K.; Conradson, S. D.; Smith, C. A.; Marsh, S. F. Characterization of Aqueous Plutonium (IV) Nitrate Complexes by Extended X-Ray Absorption Fine Structure Spectroscopy. Inorg. Chem. 1996, 35, 2841–2845; https://doi.org/10.1021/ic9511231.Search in Google Scholar
8. Xiao, C.-L.; Wu, Q.-Y.; Wang, C.-Z.; Zhao, Y.-L.; Chai, Z.-F.; Shi, W.-Q. Quantum Chemistry Study of Uranium (VI), Neptunium (V), and Plutonium (IV, VI) Complexes with Preorganized Tetradentate Phenanthrolineamide Ligands. Inorg. Chem. 2014, 53, 10846–10853; https://doi.org/10.1021/ic500816z.Search in Google Scholar PubMed
9. Sulka, M.; Cantrel, L.; Vallet, V. Theoretical Study of Plutonium (IV) Complexes Formed within the PUREX Process: a Proposal of a Plutonium Surrogate in Fire Conditions. J. Phys. Chem. A 2014, 118, 10073–10080; https://doi.org/10.1021/jp507684f.Search in Google Scholar PubMed
10. Gaunt, A. J.; May, I.; Neu, M. P.; Reilly, S. D.; Scott, B. L. Structural and Spectroscopic Characterization of Plutonium (VI) Nitrate Under Acidic Conditions. Inorg. Chem. 2011, 50, 4244–4246; https://doi.org/10.1021/ic200525u.Search in Google Scholar PubMed
11. Austin, J. P.; Sundararajan, M.; Vincent, M. A.; Hillier, I. H. The Geometric Structures, Vibrational Frequencies and Redox Properties of the Actinyl Coordination Complexes ([AnO2Ln]m; An = U, Pu, Np; L = H2O, Cl−, CO32−, CH3CO2−, OH−) in Aqueous Solution, Studied by Density Functional Theory Methods. Dalton Trans. 2009, 30, 5902–5909; https://doi.org/10.1039/b901724k.Search in Google Scholar PubMed
12. Conradson, S. D.; Abney, K. D.; Begg, B. D.; Brady, E. D.; Clark, D. L.; Den, A. C.; Ding, M.; Dorhout, P. K.; Espinosa-Faller, F. J.; Gordon, P. L.; Haire, R. G.; Hess, N. J.; Hess, R. F.; Keogh, D. W.; Lander, G. H.; Lupinetti, A. J.; Morales, L. A.; Neu, M. P.; Palmer, P. D.; Paviet-Hartmann, P.; Reilly, S. D.; Runde, W. H.; Tait, C. D.; Veirs, D. K.; Wastin, F. Higher Order Speciation Effects on Plutonium L3 X-Ray Absorption Near Edge Spectra. Inorg. Chem. 2004, 43, 116–131; https://doi.org/10.1021/ic0346477.Search in Google Scholar PubMed
13. Yun, J. I.; Cho, H. R.; Neck, V.; Almaier, M.; Seibert, A.; Marquardt, C. M.; Fanghanel, T. Investigation of the Hydrolysis of Plutonium (IV) by a Combination of Spectroscopy and Redox Potential Measurements. Radiochim. Acta 2007, 95, 89–95; https://doi.org/10.1524/ract.2007.95.2.89.Search in Google Scholar
14. Clark, A. E.; Samuels, A.; Wisuri, K.; Landstrom, S.; Saul, T. Sensitivity of Salvation Environment to Oxidation State and Position in the Early Actinide Period. Inorg. Chem. 2015, 54, 6216–6225; https://doi.org/10.1021/acs.inorgchem.5b00365.Search in Google Scholar PubMed
15. Parmar, P.; Samuels, A.; Clark, A. E. Applications of Polarizable Continuu, Models to Determine Accurate Solution-Phase Thermochemical Values Across a Broad Range of Cation Charge – The Case of U(III–VI). J. Chem. Theory Comput. 2015, 11, 55–63; https://doi.org/10.1021/ct500530q.Search in Google Scholar PubMed
16. Ryzhkov, M. V.; Enyashin, A. N.; Delley, B. Plutonium Complexes in Water: New Approach to Ab Initio Modeling. Radiochim. Acta 2021, 109, 327–342; https://doi.org/10.1515/ract-2020-0091.Search in Google Scholar
17. Ryzhkov, M. V.; Enyashin, A. N.; Delley, B. First-Principles Study on the Plutonium Ions Interaction with Diamide Molecules in Acid Solutions. Int. J Quant. Chem. 2021, 121, 266811–266816; https://doi.org/10.1002/qua.26681.Search in Google Scholar
18. Delley, B. The Conductor-Like Screening Model for Polymers and Surfaces. Mol. Simul. 2006, 32, 117–123; https://doi.org/10.1080/08927020600589684.Search in Google Scholar
19. Todorova, T.; Delley, B. Wetting of Paracetamol Surfaces Studied by DMol3-COSMO Calculations. Mol. Simul. 2008, 34, 1013–1017; https://doi.org/10.1080/08927020802235672.Search in Google Scholar
20. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, I. I. I. W. A.; Skiff, W. M. UFF, A Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035; https://doi.org/10.1021/ja00051a040.Search in Google Scholar
21. Zhechkov, L.; Heine, T.; Patchkovskii, S.; Seifert, G.; Duarte, H. A. An Efficient A Posteriori treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. J. Chem. Theory Comput. 2005, 1, 841–847; https://doi.org/10.1021/ct050065y.Search in Google Scholar PubMed
22. Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. 1990, 92, 508–517; https://doi.org/10.1063/1.458452.Search in Google Scholar
23. Koelling, D. D.; Harmon, B. N. A Technique for Relativistic Spin-Polarized Calculations. J. Phys. C: Solid State Phys. 1977, 10, 3107–3114; https://doi.org/10.1088/0022-3719/10/16/019.Search in Google Scholar
24. Perdew, J. P.; Burke, K.; Ernzerhof, M. General Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
25. Hirshfeld, F. L. Accurate Electron-Densities in Molecules. J. Mol. Struct. 1985, 130, 125–141; https://doi.org/10.1016/0022-2860(85)85028-6.Search in Google Scholar
26. Berthon, C.; Boubals, N.; Charushnikova, I. A.; Collison, D.; Cornet, S. M.; Den, A. C.; Gaunt, A. J.; Kaltsoyannis, N.; May, I.; Petit, S.; Redmond, M. P.; Reilly, S. D.; Scott, B. L. The Reaction Chemistry of Plutonyl (VI) Chloride Complexes with Triphenyl Phosphineoxide and Triphenyl Phisphinimine. Inorg. Chem. 2010, 49, 9554–9562; https://doi.org/10.1021/ic101251a.Search in Google Scholar PubMed
27. Ryzhkov, M. V.; Kupryazhkin, A. Y. First-Principles Study of Electronic Structure and Insulating Properties of Uranium and Plutonium Dioxides. J. Nucl. Mater. 2009, 384, 226–230; https://doi.org/10.1016/j.jnucmat.2008.11.011.Search in Google Scholar
28. Rosen, A.; Ellis, D. E. Relativistic Molecular Calculations in the Dirac-Slater Model. J. Chem. Phys. 1975, 62, 3039–3049; https://doi.org/10.1063/1.430892.Search in Google Scholar
29. Adachi, H. Relativistic Molecular Orbital Theort in the Dirac-Slater Model. Technol. Rep. Osaka Univ. 1977, 27, 569–576.Search in Google Scholar
30. Ryzhkov, M. V. New Method for Calculating Effective Charges on Atoms in Molecules, Clusters and Solids. J. Struct. Chem. 1998, 39, 933–937; https://doi.org/10.1007/bf02903608.Search in Google Scholar
31. Mulliken, R. S. Chemical Bonding. Annu. Rev. Phys. Chem. 1978, 29, 1–30; https://doi.org/10.1146/annurev.pc.29.100178.000245.Search in Google Scholar PubMed
32. Panak, P. J.; Booth, C. H.; Caulder, D. L.; Bucher, J. J.; Shuh, D. K.; Nitsche, H. X-Ray Absorption Fine Structure Spectroscopy of Plutonium Complexes with Bacillus Sphaericus. Radiochim. Acta 2002, 90, 315–321; https://doi.org/10.1524/ract.2002.90.6.315.Search in Google Scholar
33. Guillaumont, R.; Fanghanel, T.; Fuger, J.; Grenthe, I.; Neck, V.; Palmer, D. A.; Rand, M. H. In Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium; Elsevier: Amsterdam, Vol. 5, 2003, 3rd ed.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics
Articles in the same Issue
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics