Abstract
Development and clinical translation of small molecule PSMA-ligands labelled with a SPECT-radioisotope such as technetium-99m (99mTc) has immense importance, particularly in countries with high population density and limited amenities. Towards this, herein we report the total chemical synthesis of five Hynic (2-hydrazinonicotinic acid) conjugated PSMA ligands employing the solution phase alloc chemistry. A linear synthetic strategy was adopted for the construction of all target molecules. The amino acids that act as spacers were synthesized from corresponding unprotected precursors in 60–65 % overall yield. All the synthesized ligands were appropriately characterized using NMR, HPLC, and MS, to confirm their structural veracity. After the successful synthesis, all the ligands were radiolabelled using 99mTc and the extent of 99mTc radiolabelling was established using radioHPLC and radioTLC analysis. Two among the five ligands displayed radiochemical purity >90 %, adequate for diagnostic applications.
Acknowledgments
KSAK thankfully acknowledge Prof. B. S Patro, Head, Bio-Organic Division, Prof. P. A. Hassan, Associate Group Director, Bio Science Group for their constant support and encouragement throughout the course of this activity. We are grateful to the support from National NMR Facility, TIFR, Mumbai. KSAK is highly thankful to Dr. Anupam Mathur, BRIT, Vashi for his enthusiasm and support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The data can be obtained on request from the corresponding author.
References
1. Dhoundiyal, S.; Srivastava, S.; Kumar, S.; Singh, G.; Ashique, S.; Pal, R.; Mishra, N.; Taghizadeh-Hesary, F. Radiopharmaceuticals: Navigating the Frontier of Precision Medicine and Therapeutic Innovation. Eur. J. Med. Res. 2024, 29, 26. https://doi.org/10.1186/s40001-023-01627-0.Suche in Google Scholar PubMed PubMed Central
2. Heo, G. S.; Sultan, D.; Liu, Y. Current and Novel Radiopharmaceuticals for Imaging Cardiovascular Inflammation, Q. J. Nucl. Med. Mol. Imaging 2020, 64. https://doi.org/10.23736/S1824-4785.20.03230-6.Suche in Google Scholar PubMed PubMed Central
3. Kahts, M.; Summers, B.; Gutta, A.; Pilloy, W.; Ebenhan, T. Recently Developed Radiopharmaceuticals for Bacterial Infection Imaging. EJNMMI Radiopharm. Chem. 2024, 9, 49. https://doi.org/10.1186/s41181-024-00279-7.Suche in Google Scholar PubMed PubMed Central
4. Ahmed, H.; Haider, A.; Gisler, L.; Schibli, R.; Gebhard, C.; Ametamey, S. M. [18 F]Flurpiridaz: Facile and Improved Precursor Synthesis for This Next-Generation Cardiac Positron Emission Tomography Imaging Agent. Chem Med Chem 2020, 15, 1040–1043. https://doi.org/10.1002/cmdc.202000085.Suche in Google Scholar PubMed
5. Horoszewicz, J. S.; Kawinski, E.; Murphy, G. P. Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Res. 1987, 7, 927–935.Suche in Google Scholar
6. Clarke, R. A.; Schirra, H. J.; Catto, J. W.; Lavin, M. F.; Gardiner, R. A. Markers for Detection of Prostate Cancer. Cancers 2010, 2, 1125. https://doi.org/10.3390/cancers2021125.Suche in Google Scholar PubMed PubMed Central
7. Carter, R. E.; Feldman, A. R.; Coyle, J. T. Prostate-specific Membrane Antigen is a Hydrolase with Substrate and Pharmacologic Characteristics of a Neuropeptidase. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 749–753. https://doi.org/10.1073/pnas.93.2.749.Suche in Google Scholar PubMed PubMed Central
8. Israeli, R. S.; Powell, C. T.; Corr, J. G.; Fair, W. R.; Heston, W. D. Expression of the Prostate-Specific Membrane Antigen. Cancer Res. 1994, 54, 1807–1811.Suche in Google Scholar
9. Chen, Y.; Pullambhatla, M.; Foss, C. A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R. C.; Pomper, M. G. 2-(3-{1-Carboxy-5-[(6-[18F]Fluoro-Pyridine-3-Carbonyl)-Amino]-Pentyl}-Ureido)-Pentanedioic Acid, [18F]DCFPyL, a PSMA-Based PET Imaging Agent for Prostate Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 7645–7653. https://doi.org/10.1158/1078-0432.CCR-11-1357.Suche in Google Scholar PubMed PubMed Central
10. Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug. Chem. 2012, 23, 688–697. https://doi.org/10.1021/bc200279b.Suche in Google Scholar PubMed
11. Eder, M.; Neels, O.; Müller, M.; Bauder-Wüst, U.; Remde, Y.; Schäfer, M.; Hennrich, U.; Eisenhut, M.; Afshar-Oromieh, A.; Haberkorn, U.; Kopka, K. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals 2014, 7, 779–796. https://doi.org/10.3390/ph7070779.Suche in Google Scholar PubMed PubMed Central
12. Giesel, F. L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W. A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2019, 60, 362–368. https://doi.org/10.2967/jnumed.118.212233.Suche in Google Scholar PubMed PubMed Central
13. Rauscher, I.; Düwel, C.; Haller, B.; Rischpler, C.; Heck, M. M.; Gschwend, J. E.; Schwaiger, M.; Maurer, T.; Eiber, M. Efficacy, Predictive Factors, and Prediction Nomograms for 68Ga-Labeled Prostate-specific Membrane Antigen-Ligand Positron-Emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer after Radical Prostatectomy. Eur. Urol. 2018, 73, 656–661; https://doi.org/10.1016/j.eururo.2018.01.006.Suche in Google Scholar PubMed
14. Qaim, S. M. The Present and Future of Medical Radionuclide Production. Radiochim. Acta 2012, 100, 635–651; https://doi.org/10.1524/ract.2012.1966.Suche in Google Scholar
15. Hutton, B. F. The Origins of SPECT and SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 2014, 41 (Suppl 1), S3–S16. https://doi.org/10.1007/s00259-013-2606-5.Suche in Google Scholar PubMed
16. Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; la Fougère, C.; Mariani, G.; Massalha, S.; Paez, D.; Giammarile, F. Two Decades of SPECT/CT – the Coming of Age of a Technology: An Updated Review of Literature Evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. https://doi.org/10.1007/s00259-019-04404-6.Suche in Google Scholar PubMed PubMed Central
17. Khalil, M. M.; Tremoleda, J. L.; Bayomy, T. B.; Gsell, W. Molecular SPECT Imaging: An Overview. Int. J. Mol. Imaging 2011, 2011, 796025. https://doi.org/10.1155/2011/796025.Suche in Google Scholar PubMed PubMed Central
18. Johns, P. M.; Nino, J. C. Room Temperature Semiconductor Detectors for Nuclear Security. J. Appl. Phys. 2019, 126, 040902. https://doi.org/10.1063/1.5091805.Suche in Google Scholar
19. Bocher, M.; Blevis, I. M.; Tsukerman, L.; Shrem, Y.; Kovalski, G.; Volokh, L. A Fast Cardiac Gamma Camera with Dynamic SPECT Capabilities: Design, System Validation and Future Potential. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1887–1902. https://doi.org/10.1007/s00259-010-1488-z.Suche in Google Scholar PubMed PubMed Central
20. Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine: Physics in Nuclear Medicine E-Book; Elsevier Health Sciences: Philadelphia, 2012.10.1016/B978-1-4160-5198-5.00001-0Suche in Google Scholar
21. Hillier, S. M.; Maresca, K. P.; Lu, G.; Merkin, R. D.; Marquis, J. C.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. 99mTc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen for Molecular Imaging of Prostate Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 1369–1376. https://doi.org/10.2967/jnumed.112.116624.Suche in Google Scholar PubMed
22. Lu, G.; Maresca, K. P.; Hillier, S. M.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. Synthesis and SAR of 99mTc/Re-Labeled Small Molecule Prostate Specific Membrane Antigen Inhibitors with Novel Polar Chelates. Bioorg. Med. Chem. Lett. 2013, 23, 1557–1563. https://doi.org/10.1016/j.bmcl.2012.09.014.Suche in Google Scholar PubMed
23. Vallabhajosula, S.; Nikolopoulou, A.; Babich, J. W.; Osborne, J. R.; Tagawa, S. T.; Lipai, I.; Solnes, L.; Maresca, K. P.; Armor, T.; Joyal, J. L.; Crummet, R.; Stubbs, J. B.; Goldsmith, S. J. 99mTc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen: Pharmacokinetics and Biodistribution Studies in Healthy Subjects and Patients with Metastatic Prostate Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2014, 55, 1791–1798. https://doi.org/10.2967/jnumed.114.140426.Suche in Google Scholar PubMed
24. Banerjee, S. R.; Foss, C. A.; Castanares, M.; Mease, R. C.; Byun, Y.; Fox, J. J.; Hilton, J.; Lupold, S. E.; Kozikowski, A. P.; Pomper, M. G. Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA). J. Med. Chem. 2008, 51, 4504–4517. https://doi.org/10.1021/jm800111u.Suche in Google Scholar PubMed PubMed Central
25. Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T. I.; Sanders, J. C.; Schmidt, D.; Prante, O.; Bäuerle, T.; Cavallaro, A.; Uder, M.; Wullich, B.; Goebell, P.; Kuwert, T.; Ritt, P. 99m Tc-MIP-1404-SPECT/CT for the Detection of PSMA-Positive Lesions in 225 Patients with Biochemical Recurrence of Prostate Cancer. The Prostate 2018, 78, 54–63. https://doi.org/10.1002/pros.23444.Suche in Google Scholar PubMed
26. Mamlins, E.; Scharbert, L.; Cardinale, J.; Krotov, M.; Winter, E.; Rathke, H.; Strodel, B.; Ankrah, A. O.; Sathekge, M.; Haberkorn, U.; Kratochwil, C.; Giesel, F. L. The Theranostic Optimization of PSMA-GCK01 Does Not Compromise the Imaging Characteristics of [99mTc]Tc-PSMA-GCK01 Compared to Dedicated Diagnostic [99mTc]Tc-Edda/hynic-iPSMA in Prostate Cancer. Mol. Imaging Biol. 2024, 26, 81–89. https://doi.org/10.1007/s11307-023-01881-y.Suche in Google Scholar PubMed PubMed Central
27. Kularatne, S. A.; Zhou, Z.; Yang, J.; Post, C. B.; Low, P. S. Design, Synthesis, and Preclinical Evaluation of Prostate-specific Membrane Antigen Targeted (99m)Tc-Radioimaging Agents. Mol. Pharm. 2009, 6, 790–800. https://doi.org/10.1021/mp9000712.Suche in Google Scholar PubMed PubMed Central
28. Maresca, K. P.; Hillier, S. M.; Lu, G.; Marquis, J. C.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. Small Molecule Inhibitors of PSMA Incorporating Technetium-99m for Imaging Prostate Cancer: Effects of Chelate Design on Pharmacokinetics. Inorganica Chim. Acta 2012, 389, 168–175. https://doi.org/10.1016/j.ica.2012.03.002.Suche in Google Scholar
29. Banerjee, S. R.; Pullambhatla, M.; Foss, C. A.; Falk, A.; Byun, Y.; Nimmagadda, S.; Mease, R. C.; Pomper, M. G. Effect of Chelators on the Pharmacokinetics of 99m Tc-Labeled Imaging Agents for the Prostate-Specific Membrane Antigen (PSMA). J. Med. Chem. 2013, 56, 6108–6121. https://doi.org/10.1021/jm400823w.Suche in Google Scholar PubMed PubMed Central
30. Mosayebnia, M.; Hajimahdi, Z.; Beiki, D.; Rezaeianpour, M.; Hajiramezanali, M.; Geramifar, P.; Sabzevari, O.; Amini, M.; Hatamabadi, D.; Shahhosseini, S. Design, Synthesis, Radiolabeling and Biological Evaluation of New Urea-Based Peptides Targeting Prostate Specific Membrane Antigen. Bioorganic Chem. 2020, 99, 103743. https://doi.org/10.1016/j.bioorg.2020.103743.Suche in Google Scholar PubMed
31. Sikora, A. E.; Maurin, M.; Jaron, A. W. O.; Pijarowska-Kruszyna, J.; Owska, M. O.; Janota, B.; Radzik, M.; Garnuszek, P. Psma Inhibitor Derivatives for Labelling with 99mtc via Hynic, a Radiopharmaceutical Kit, Radiopharmaceutical Preparations and Their Use in Prostate Cancer Diagnostics, EP3721907A1, 2020. https://patents.google.com/patent/EP3721907A1/en (accessed-2024-10-1).Suche in Google Scholar
32. Brunello, S.; Salvarese, N.; Carpanese, D.; Gobbi, C.; Melendez-Alafort, L.; Bolzati, C. A Review on the Current State and Future Perspectives of [99mTc]Tc-Housed PSMA-I in Prostate Cancer. Molecules 2022, 27, 2617. https://doi.org/10.3390/molecules27092617.Suche in Google Scholar PubMed PubMed Central
33. Meszaros, L. K.; Dose, A.; Biagini, S. C. G.; Blower, P. J. Hydrazinonicotinic Acid (HYNIC) – Coordination Chemistry and Applications in Radiopharmaceutical Chemistry. Inorganica Chim. Acta 2010, 363, 1059–1069. https://doi.org/10.1016/j.ica.2010.01.009.Suche in Google Scholar
34. Liu, S. 6-Hydrazinonicotinamide Derivatives as Bifunctional Coupling Agents for 99mTc-Labeling of Small Biomolecules. In Contrast Agents III Radiopharm. – Diagn. Ther.; Krause, W., Ed.; Springer: Berlin, Heidelberg, 2005; pp. 117–153.10.1007/b101226Suche in Google Scholar
35. Mather, S. J.; Ellison, D. Reduction-mediated Technetium-99m Labeling of Monoclonal Antibodies. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1990, 31, 692–697.Suche in Google Scholar
36. Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F. O. Clinical Translation of a PSMA Inhibitor for 99m Tc-Based SPECT. Nucl. Med. Biol. 2017, 48, 36–44. https://doi.org/10.1016/j.nucmedbio.2017.01.012.Suche in Google Scholar PubMed
37. Xu, X.; Zhang, J.; Hu, S.; He, S.; Bao, X.; Ma, G.; Luo, J.; Cheng, J.; Zhang, Y. 99m Tc-Labeling and Evaluation of a HYNIC Modified Small-Molecular Inhibitor of Prostate-specific Membrane Antigen. Nucl. Med. Biol. 2017, 48, 69–75. https://doi.org/10.1016/j.nucmedbio.2017.01.010.Suche in Google Scholar PubMed
38. Zhang, J.; Zhang, J.; Xu, X.; Lu, L.; Hu, S.; Liu, C.; Cheng, J.; Song, S.; Zhang, Y.; Shi, L. Q. Evaluation of Radiation Dosimetry of 99mTc-HYNIC-PSMA and Imaging in Prostate Cancer. Sci. Rep. 2020, 10, 4179. https://doi.org/10.1038/s41598-020-61129-5.Suche in Google Scholar PubMed PubMed Central
39. Kumar, K. S. A.; Mathur, A. Total Chemical Synthesis of PSMA-11: API for 68Ga-PSMA-11 Used for Prostate Cancer Diagnosis. Eur. J. Med. Chem. Rep 2021, 3, 100014. https://doi.org/10.1016/j.ejmcr.2021.100014.Suche in Google Scholar
40. Kumar, K. S. A.; Mathur, A. A Convenient Total Synthesis of PSMA-617: A Prostate Specific Membrane Antigen (PSMA) Ligand for Prostate Cancer Endotherapeutic Applications. Eur. J. Med. Chem. Rep 2022, 6, 100084. https://doi.org/10.1016/j.ejmcr.2022.100084.Suche in Google Scholar
41. Kumar, K. S. A.; Mathur, A. Total Chemical Synthesis of PSMA-617: An API for Prostate Cancer Endotherapeutic Applications. Radiochim. Acta 2024, 112, 553–563. https://doi.org/10.1515/ract-2023-0205.Suche in Google Scholar
42. Kumar, K. S. A.; Mathur, A. Challenges in the Solution Phase Synthesis of PSMA-11 and PSMA-617: Organic Ligands for Radiopharmaceutical Preparations in Prostate Cancer Medication. Radiochim. Acta 2024, 112, 651–662. https://doi.org/10.1515/ract-2024-0280.Suche in Google Scholar
43. Abrams, M. J.; Juweid, M.; tenKate, C. I.; Schwartz, D. A.; Hauser, M. M.; Gaul, F. E.; Fuccello, A. J.; Rubin, R. H.; Strauss, H. W.; Fischman, A. J. Technetium-99m-Human Polyclonal IgG Radiolabeled via the Hydrazino Nicotinamide Derivative for Imaging Focal Sites of Infection in Rats. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1990, 31, 2022–2028.Suche in Google Scholar
44. Thieriet, N.; Alsina, J.; Giralt, E.; Guibé, F.; Albericio, F. Use of Alloc-Amino Acids in Solid-Phase Peptide Synthesis. Tandem Deprotection-Coupling Reactions Using Neutral Conditions. Tetrahedron Lett. 1997, 38, 7275–7278. https://doi.org/10.1016/S0040-4039(97)01690-0.Suche in Google Scholar
45. Benešová, M.; Bauder-Wüst, U.; Schäfer, M.; Klika, K. D.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Linker Modification Strategies to Control the Prostate-specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016, 59, 1761–1775; https://doi.org/10.1021/acs.jmedchem.5b01210.Suche in Google Scholar PubMed
46. Afshar-Oromieh, A.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H. G.; Hadaschik, B. A.; Holland-Letz, T.; Giesel, F. L.; Kratochwil, C.; Haufe, S.; Haberkorn, U.; Zechmann, C. M. PET Imaging with a [68Ga] Gallium-Based PSMA Ligand for the Diagnosis of Prostate Cancer: Biodistribution in Humans and First Evaluation of Tumour Lesions. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 486–495; https://doi.org/10.1007/s00259-012-2298-2.Suche in Google Scholar PubMed
47. Hadisi, M.; Vosoughi, N.; Yousefnia, H.; Bahrami-Samani, A.; Zolghadri, S.; Vosoughi, S.; Alirezapour, B. Preclinical Evaluation of 188Re-HYNIC-PSMA as a Novel Therapeutic Agent. J. Radioanal. Nucl. Chem. 2022, 331, 841–849. https://doi.org/10.1007/s10967-021-08173-1.Suche in Google Scholar
48. King, R. C.; Surfraz, M. B.-U.; Biagini, S. C. G.; Blower, P. J.; Mather, S. J. How Do HYNIC-Conjugated Peptides Bind Technetium? Insights from LC-MS and Stability Studies. Dalton Trans. Camb. Engl. 2007, 21, 4998–5007. https://doi.org/10.1039/b705111e.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics
Artikel in diesem Heft
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics