Startseite Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands

  • K. S. Ajish Kumar ORCID logo EMAIL logo und Madhava B. Mallia ORCID logo
Veröffentlicht/Copyright: 16. Juni 2025

Abstract

Development and clinical translation of small molecule PSMA-ligands labelled with a SPECT-radioisotope such as technetium-99m (99mTc) has immense importance, particularly in countries with high population density and limited amenities. Towards this, herein we report the total chemical synthesis of five Hynic (2-hydrazinonicotinic acid) conjugated PSMA ligands employing the solution phase alloc chemistry. A linear synthetic strategy was adopted for the construction of all target molecules. The amino acids that act as spacers were synthesized from corresponding unprotected precursors in 60–65 % overall yield. All the synthesized ligands were appropriately characterized using NMR, HPLC, and MS, to confirm their structural veracity. After the successful synthesis, all the ligands were radiolabelled using 99mTc and the extent of 99mTc radiolabelling was established using radioHPLC and radioTLC analysis. Two among the five ligands displayed radiochemical purity >90 %, adequate for diagnostic applications.


Corresponding author: K. S. Ajish Kumar, Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India; and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India, E-mail:

Acknowledgments

KSAK thankfully acknowledge Prof. B. S Patro, Head, Bio-Organic Division, Prof. P. A. Hassan, Associate Group Director, Bio Science Group for their constant support and encouragement throughout the course of this activity. We are grateful to the support from National NMR Facility, TIFR, Mumbai. KSAK is highly thankful to Dr. Anupam Mathur, BRIT, Vashi for his enthusiasm and support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The data can be obtained on request from the corresponding author.

References

1. Dhoundiyal, S.; Srivastava, S.; Kumar, S.; Singh, G.; Ashique, S.; Pal, R.; Mishra, N.; Taghizadeh-Hesary, F. Radiopharmaceuticals: Navigating the Frontier of Precision Medicine and Therapeutic Innovation. Eur. J. Med. Res. 2024, 29, 26. https://doi.org/10.1186/s40001-023-01627-0.Suche in Google Scholar PubMed PubMed Central

2. Heo, G. S.; Sultan, D.; Liu, Y. Current and Novel Radiopharmaceuticals for Imaging Cardiovascular Inflammation, Q. J. Nucl. Med. Mol. Imaging 2020, 64. https://doi.org/10.23736/S1824-4785.20.03230-6.Suche in Google Scholar PubMed PubMed Central

3. Kahts, M.; Summers, B.; Gutta, A.; Pilloy, W.; Ebenhan, T. Recently Developed Radiopharmaceuticals for Bacterial Infection Imaging. EJNMMI Radiopharm. Chem. 2024, 9, 49. https://doi.org/10.1186/s41181-024-00279-7.Suche in Google Scholar PubMed PubMed Central

4. Ahmed, H.; Haider, A.; Gisler, L.; Schibli, R.; Gebhard, C.; Ametamey, S. M. [18 F]Flurpiridaz: Facile and Improved Precursor Synthesis for This Next-Generation Cardiac Positron Emission Tomography Imaging Agent. Chem Med Chem 2020, 15, 1040–1043. https://doi.org/10.1002/cmdc.202000085.Suche in Google Scholar PubMed

5. Horoszewicz, J. S.; Kawinski, E.; Murphy, G. P. Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Res. 1987, 7, 927–935.Suche in Google Scholar

6. Clarke, R. A.; Schirra, H. J.; Catto, J. W.; Lavin, M. F.; Gardiner, R. A. Markers for Detection of Prostate Cancer. Cancers 2010, 2, 1125. https://doi.org/10.3390/cancers2021125.Suche in Google Scholar PubMed PubMed Central

7. Carter, R. E.; Feldman, A. R.; Coyle, J. T. Prostate-specific Membrane Antigen is a Hydrolase with Substrate and Pharmacologic Characteristics of a Neuropeptidase. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 749–753. https://doi.org/10.1073/pnas.93.2.749.Suche in Google Scholar PubMed PubMed Central

8. Israeli, R. S.; Powell, C. T.; Corr, J. G.; Fair, W. R.; Heston, W. D. Expression of the Prostate-Specific Membrane Antigen. Cancer Res. 1994, 54, 1807–1811.Suche in Google Scholar

9. Chen, Y.; Pullambhatla, M.; Foss, C. A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R. C.; Pomper, M. G. 2-(3-{1-Carboxy-5-[(6-[18F]Fluoro-Pyridine-3-Carbonyl)-Amino]-Pentyl}-Ureido)-Pentanedioic Acid, [18F]DCFPyL, a PSMA-Based PET Imaging Agent for Prostate Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 7645–7653. https://doi.org/10.1158/1078-0432.CCR-11-1357.Suche in Google Scholar PubMed PubMed Central

10. Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug. Chem. 2012, 23, 688–697. https://doi.org/10.1021/bc200279b.Suche in Google Scholar PubMed

11. Eder, M.; Neels, O.; Müller, M.; Bauder-Wüst, U.; Remde, Y.; Schäfer, M.; Hennrich, U.; Eisenhut, M.; Afshar-Oromieh, A.; Haberkorn, U.; Kopka, K. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals 2014, 7, 779–796. https://doi.org/10.3390/ph7070779.Suche in Google Scholar PubMed PubMed Central

12. Giesel, F. L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W. A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2019, 60, 362–368. https://doi.org/10.2967/jnumed.118.212233.Suche in Google Scholar PubMed PubMed Central

13. Rauscher, I.; Düwel, C.; Haller, B.; Rischpler, C.; Heck, M. M.; Gschwend, J. E.; Schwaiger, M.; Maurer, T.; Eiber, M. Efficacy, Predictive Factors, and Prediction Nomograms for 68Ga-Labeled Prostate-specific Membrane Antigen-Ligand Positron-Emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer after Radical Prostatectomy. Eur. Urol. 2018, 73, 656–661; https://doi.org/10.1016/j.eururo.2018.01.006.Suche in Google Scholar PubMed

14. Qaim, S. M. The Present and Future of Medical Radionuclide Production. Radiochim. Acta 2012, 100, 635–651; https://doi.org/10.1524/ract.2012.1966.Suche in Google Scholar

15. Hutton, B. F. The Origins of SPECT and SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 2014, 41 (Suppl 1), S3–S16. https://doi.org/10.1007/s00259-013-2606-5.Suche in Google Scholar PubMed

16. Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; la Fougère, C.; Mariani, G.; Massalha, S.; Paez, D.; Giammarile, F. Two Decades of SPECT/CT – the Coming of Age of a Technology: An Updated Review of Literature Evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. https://doi.org/10.1007/s00259-019-04404-6.Suche in Google Scholar PubMed PubMed Central

17. Khalil, M. M.; Tremoleda, J. L.; Bayomy, T. B.; Gsell, W. Molecular SPECT Imaging: An Overview. Int. J. Mol. Imaging 2011, 2011, 796025. https://doi.org/10.1155/2011/796025.Suche in Google Scholar PubMed PubMed Central

18. Johns, P. M.; Nino, J. C. Room Temperature Semiconductor Detectors for Nuclear Security. J. Appl. Phys. 2019, 126, 040902. https://doi.org/10.1063/1.5091805.Suche in Google Scholar

19. Bocher, M.; Blevis, I. M.; Tsukerman, L.; Shrem, Y.; Kovalski, G.; Volokh, L. A Fast Cardiac Gamma Camera with Dynamic SPECT Capabilities: Design, System Validation and Future Potential. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1887–1902. https://doi.org/10.1007/s00259-010-1488-z.Suche in Google Scholar PubMed PubMed Central

20. Cherry, S. R.; Sorenson, J. A.; Phelps, M. E. Physics in Nuclear Medicine: Physics in Nuclear Medicine E-Book; Elsevier Health Sciences: Philadelphia, 2012.10.1016/B978-1-4160-5198-5.00001-0Suche in Google Scholar

21. Hillier, S. M.; Maresca, K. P.; Lu, G.; Merkin, R. D.; Marquis, J. C.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. 99mTc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen for Molecular Imaging of Prostate Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 1369–1376. https://doi.org/10.2967/jnumed.112.116624.Suche in Google Scholar PubMed

22. Lu, G.; Maresca, K. P.; Hillier, S. M.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. Synthesis and SAR of 99mTc/Re-Labeled Small Molecule Prostate Specific Membrane Antigen Inhibitors with Novel Polar Chelates. Bioorg. Med. Chem. Lett. 2013, 23, 1557–1563. https://doi.org/10.1016/j.bmcl.2012.09.014.Suche in Google Scholar PubMed

23. Vallabhajosula, S.; Nikolopoulou, A.; Babich, J. W.; Osborne, J. R.; Tagawa, S. T.; Lipai, I.; Solnes, L.; Maresca, K. P.; Armor, T.; Joyal, J. L.; Crummet, R.; Stubbs, J. B.; Goldsmith, S. J. 99mTc-Labeled Small-Molecule Inhibitors of Prostate-Specific Membrane Antigen: Pharmacokinetics and Biodistribution Studies in Healthy Subjects and Patients with Metastatic Prostate Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2014, 55, 1791–1798. https://doi.org/10.2967/jnumed.114.140426.Suche in Google Scholar PubMed

24. Banerjee, S. R.; Foss, C. A.; Castanares, M.; Mease, R. C.; Byun, Y.; Fox, J. J.; Hilton, J.; Lupold, S. E.; Kozikowski, A. P.; Pomper, M. G. Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA). J. Med. Chem. 2008, 51, 4504–4517. https://doi.org/10.1021/jm800111u.Suche in Google Scholar PubMed PubMed Central

25. Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T. I.; Sanders, J. C.; Schmidt, D.; Prante, O.; Bäuerle, T.; Cavallaro, A.; Uder, M.; Wullich, B.; Goebell, P.; Kuwert, T.; Ritt, P. 99m Tc-MIP-1404-SPECT/CT for the Detection of PSMA-Positive Lesions in 225 Patients with Biochemical Recurrence of Prostate Cancer. The Prostate 2018, 78, 54–63. https://doi.org/10.1002/pros.23444.Suche in Google Scholar PubMed

26. Mamlins, E.; Scharbert, L.; Cardinale, J.; Krotov, M.; Winter, E.; Rathke, H.; Strodel, B.; Ankrah, A. O.; Sathekge, M.; Haberkorn, U.; Kratochwil, C.; Giesel, F. L. The Theranostic Optimization of PSMA-GCK01 Does Not Compromise the Imaging Characteristics of [99mTc]Tc-PSMA-GCK01 Compared to Dedicated Diagnostic [99mTc]Tc-Edda/hynic-iPSMA in Prostate Cancer. Mol. Imaging Biol. 2024, 26, 81–89. https://doi.org/10.1007/s11307-023-01881-y.Suche in Google Scholar PubMed PubMed Central

27. Kularatne, S. A.; Zhou, Z.; Yang, J.; Post, C. B.; Low, P. S. Design, Synthesis, and Preclinical Evaluation of Prostate-specific Membrane Antigen Targeted (99m)Tc-Radioimaging Agents. Mol. Pharm. 2009, 6, 790–800. https://doi.org/10.1021/mp9000712.Suche in Google Scholar PubMed PubMed Central

28. Maresca, K. P.; Hillier, S. M.; Lu, G.; Marquis, J. C.; Zimmerman, C. N.; Eckelman, W. C.; Joyal, J. L.; Babich, J. W. Small Molecule Inhibitors of PSMA Incorporating Technetium-99m for Imaging Prostate Cancer: Effects of Chelate Design on Pharmacokinetics. Inorganica Chim. Acta 2012, 389, 168–175. https://doi.org/10.1016/j.ica.2012.03.002.Suche in Google Scholar

29. Banerjee, S. R.; Pullambhatla, M.; Foss, C. A.; Falk, A.; Byun, Y.; Nimmagadda, S.; Mease, R. C.; Pomper, M. G. Effect of Chelators on the Pharmacokinetics of 99m Tc-Labeled Imaging Agents for the Prostate-Specific Membrane Antigen (PSMA). J. Med. Chem. 2013, 56, 6108–6121. https://doi.org/10.1021/jm400823w.Suche in Google Scholar PubMed PubMed Central

30. Mosayebnia, M.; Hajimahdi, Z.; Beiki, D.; Rezaeianpour, M.; Hajiramezanali, M.; Geramifar, P.; Sabzevari, O.; Amini, M.; Hatamabadi, D.; Shahhosseini, S. Design, Synthesis, Radiolabeling and Biological Evaluation of New Urea-Based Peptides Targeting Prostate Specific Membrane Antigen. Bioorganic Chem. 2020, 99, 103743. https://doi.org/10.1016/j.bioorg.2020.103743.Suche in Google Scholar PubMed

31. Sikora, A. E.; Maurin, M.; Jaron, A. W. O.; Pijarowska-Kruszyna, J.; Owska, M. O.; Janota, B.; Radzik, M.; Garnuszek, P. Psma Inhibitor Derivatives for Labelling with 99mtc via Hynic, a Radiopharmaceutical Kit, Radiopharmaceutical Preparations and Their Use in Prostate Cancer Diagnostics, EP3721907A1, 2020. https://patents.google.com/patent/EP3721907A1/en (accessed-2024-10-1).Suche in Google Scholar

32. Brunello, S.; Salvarese, N.; Carpanese, D.; Gobbi, C.; Melendez-Alafort, L.; Bolzati, C. A Review on the Current State and Future Perspectives of [99mTc]Tc-Housed PSMA-I in Prostate Cancer. Molecules 2022, 27, 2617. https://doi.org/10.3390/molecules27092617.Suche in Google Scholar PubMed PubMed Central

33. Meszaros, L. K.; Dose, A.; Biagini, S. C. G.; Blower, P. J. Hydrazinonicotinic Acid (HYNIC) – Coordination Chemistry and Applications in Radiopharmaceutical Chemistry. Inorganica Chim. Acta 2010, 363, 1059–1069. https://doi.org/10.1016/j.ica.2010.01.009.Suche in Google Scholar

34. Liu, S. 6-Hydrazinonicotinamide Derivatives as Bifunctional Coupling Agents for 99mTc-Labeling of Small Biomolecules. In Contrast Agents III Radiopharm. – Diagn. Ther.; Krause, W., Ed.; Springer: Berlin, Heidelberg, 2005; pp. 117–153.10.1007/b101226Suche in Google Scholar

35. Mather, S. J.; Ellison, D. Reduction-mediated Technetium-99m Labeling of Monoclonal Antibodies. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1990, 31, 692–697.Suche in Google Scholar

36. Ferro-Flores, G.; Luna-Gutiérrez, M.; Ocampo-García, B.; Santos-Cuevas, C.; Azorín-Vega, E.; Jiménez-Mancilla, N.; Orocio-Rodríguez, E.; Davanzo, J.; García-Pérez, F. O. Clinical Translation of a PSMA Inhibitor for 99m Tc-Based SPECT. Nucl. Med. Biol. 2017, 48, 36–44. https://doi.org/10.1016/j.nucmedbio.2017.01.012.Suche in Google Scholar PubMed

37. Xu, X.; Zhang, J.; Hu, S.; He, S.; Bao, X.; Ma, G.; Luo, J.; Cheng, J.; Zhang, Y. 99m Tc-Labeling and Evaluation of a HYNIC Modified Small-Molecular Inhibitor of Prostate-specific Membrane Antigen. Nucl. Med. Biol. 2017, 48, 69–75. https://doi.org/10.1016/j.nucmedbio.2017.01.010.Suche in Google Scholar PubMed

38. Zhang, J.; Zhang, J.; Xu, X.; Lu, L.; Hu, S.; Liu, C.; Cheng, J.; Song, S.; Zhang, Y.; Shi, L. Q. Evaluation of Radiation Dosimetry of 99mTc-HYNIC-PSMA and Imaging in Prostate Cancer. Sci. Rep. 2020, 10, 4179. https://doi.org/10.1038/s41598-020-61129-5.Suche in Google Scholar PubMed PubMed Central

39. Kumar, K. S. A.; Mathur, A. Total Chemical Synthesis of PSMA-11: API for 68Ga-PSMA-11 Used for Prostate Cancer Diagnosis. Eur. J. Med. Chem. Rep 2021, 3, 100014. https://doi.org/10.1016/j.ejmcr.2021.100014.Suche in Google Scholar

40. Kumar, K. S. A.; Mathur, A. A Convenient Total Synthesis of PSMA-617: A Prostate Specific Membrane Antigen (PSMA) Ligand for Prostate Cancer Endotherapeutic Applications. Eur. J. Med. Chem. Rep 2022, 6, 100084. https://doi.org/10.1016/j.ejmcr.2022.100084.Suche in Google Scholar

41. Kumar, K. S. A.; Mathur, A. Total Chemical Synthesis of PSMA-617: An API for Prostate Cancer Endotherapeutic Applications. Radiochim. Acta 2024, 112, 553–563. https://doi.org/10.1515/ract-2023-0205.Suche in Google Scholar

42. Kumar, K. S. A.; Mathur, A. Challenges in the Solution Phase Synthesis of PSMA-11 and PSMA-617: Organic Ligands for Radiopharmaceutical Preparations in Prostate Cancer Medication. Radiochim. Acta 2024, 112, 651–662. https://doi.org/10.1515/ract-2024-0280.Suche in Google Scholar

43. Abrams, M. J.; Juweid, M.; tenKate, C. I.; Schwartz, D. A.; Hauser, M. M.; Gaul, F. E.; Fuccello, A. J.; Rubin, R. H.; Strauss, H. W.; Fischman, A. J. Technetium-99m-Human Polyclonal IgG Radiolabeled via the Hydrazino Nicotinamide Derivative for Imaging Focal Sites of Infection in Rats. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1990, 31, 2022–2028.Suche in Google Scholar

44. Thieriet, N.; Alsina, J.; Giralt, E.; Guibé, F.; Albericio, F. Use of Alloc-Amino Acids in Solid-Phase Peptide Synthesis. Tandem Deprotection-Coupling Reactions Using Neutral Conditions. Tetrahedron Lett. 1997, 38, 7275–7278. https://doi.org/10.1016/S0040-4039(97)01690-0.Suche in Google Scholar

45. Benešová, M.; Bauder-Wüst, U.; Schäfer, M.; Klika, K. D.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Linker Modification Strategies to Control the Prostate-specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016, 59, 1761–1775; https://doi.org/10.1021/acs.jmedchem.5b01210.Suche in Google Scholar PubMed

46. Afshar-Oromieh, A.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H. G.; Hadaschik, B. A.; Holland-Letz, T.; Giesel, F. L.; Kratochwil, C.; Haufe, S.; Haberkorn, U.; Zechmann, C. M. PET Imaging with a [68Ga] Gallium-Based PSMA Ligand for the Diagnosis of Prostate Cancer: Biodistribution in Humans and First Evaluation of Tumour Lesions. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 486–495; https://doi.org/10.1007/s00259-012-2298-2.Suche in Google Scholar PubMed

47. Hadisi, M.; Vosoughi, N.; Yousefnia, H.; Bahrami-Samani, A.; Zolghadri, S.; Vosoughi, S.; Alirezapour, B. Preclinical Evaluation of 188Re-HYNIC-PSMA as a Novel Therapeutic Agent. J. Radioanal. Nucl. Chem. 2022, 331, 841–849. https://doi.org/10.1007/s10967-021-08173-1.Suche in Google Scholar

48. King, R. C.; Surfraz, M. B.-U.; Biagini, S. C. G.; Blower, P. J.; Mather, S. J. How Do HYNIC-Conjugated Peptides Bind Technetium? Insights from LC-MS and Stability Studies. Dalton Trans. Camb. Engl. 2007, 21, 4998–5007. https://doi.org/10.1039/b705111e.Suche in Google Scholar PubMed PubMed Central

Received: 2025-03-18
Accepted: 2025-05-30
Published Online: 2025-06-16
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2025-0038/html
Button zum nach oben scrollen