The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
-
Dzaki A. Furqon
, Heny Suseno
und Miftakul Munir
Abstract
This study aims to determine the effect of salinity and microplastic concentration on the bioaccumulation ability of microplastics in oyster (Crassostera Gigas) using nuclear techniques. Biokinetic experiments were conducted using a single-compartment approach utilizing 131I. The biokinetic experiment methods were biota collection, acclimatization, bioaccumulation, and elimination. Bioaccumulation was carried out by placing the biota in an aquarium containing seawater media spiked with PSS-131I with concentrations of 0.96, 1.93, and 3.85 mg L−1 and salinity differences of 30, 32, and 34 g L−1 for seven days and depuration for seven days by placing the organism in media without microplastics. The experimental results showed that the highest uptake value (CF) was in the 3.85 mg L−1 concentration treatment, which was 3.1 × 10−5 mL g−1 and in the depuration process could maintain PSS-131I by 47 %. In the salinity treatment, the highest CF was at a salinity of 34 g L−1 with a value of 4 × 10−5 mL.g-1. In the depuration process, it can maintain PSS-131I by 43 %. The experimental results showed that the bioaccumulation rate of PSS-131I was affected by salinity and concentration. Concentration and salinity were directly proportional to the increase in bioaccumulation.
Acknowledgments
All authors are key contributors. The authors acknowledge the Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, the National Research and Innovation Agency of Indonesia (BRIN) for the PSS-131I.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This research was conducted with the support of the RIIM-BRIN program from the Indonesia Endowment Fund for Education Agency (LPDP).
-
Data availability: Not applicable.
References
1. Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T. S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588; https://doi.org/10.1016/j.marpolbul.2011.09.025.Suche in Google Scholar PubMed
2. Gholamhosseini, A.; Banaee, M.; Sureda, A.; Timar, N.; Zeidi, A.; Faggio, C. Physiological Response of Freshwater Crayfish, Astacus leptodactylus Exposed to Polyethylene Microplastics at Different Temperature. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2023, 267, 109581; https://doi.org/10.1016/j.cbpc.2023.109581.Suche in Google Scholar PubMed
3. Pan, Z.; Liu, Q.; Xu, J.; Li, W.; Lin, H. Microplastic Contamination in Seafood from Dongshan Bay in Southeastern China and its Health Risk Implication for Human Consumption. Environ. Pollut. 2022, 303; https://doi.org/10.1016/j.envpol.2022.119163.Suche in Google Scholar PubMed
4. Andrady, A. L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596; https://doi.org/10.1016/j.marpolbul.2011.05.030.Suche in Google Scholar PubMed
5. Isfarin, N. N.; Fara, M. E.; Krisna, H. N.; Machdani, S.; Munir, M. Microplastics in Indonesian Land and Aquatic Environment: From Research Activities to Regulation Policies. Mar. Pollut. Bull. 2024, 206, 116813; https://doi.org/10.1016/j.marpolbul.2024.116813.Suche in Google Scholar PubMed
6. Vieira, Y.; Lima, E. C.; Foletto, E. L.; Dotto, G. L. Microplastics Physicochemical Properties, Specific Adsorption Modeling and Their Interaction with Pharmaceuticals and Other Emerging Contaminants. Sci. Total Environ. 2021, 753, 141981; https://doi.org/10.1016/j.scitotenv.2020.141981.Suche in Google Scholar PubMed
7. Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199; https://doi.org/10.1016/j.envint.2022.107199.Suche in Google Scholar PubMed
8. Yang, Y.; Li, R.; Liu, A.; Xu, J.; Li, L.; Zhao, R.; Qu, M.; Di, Y. How Does the Internal Distribution of Microplastics in Scylla serrata Link with the Antioxidant Response in Functional Tissues? Environ. Pollut. 2023, 324; https://doi.org/10.1016/j.envpol.2023.121423.Suche in Google Scholar PubMed
9. Imasha, H. U. E.; Babel, S. Microplastics Contamination in the Green Mussels (Perna Viridis) Cultured for Human Consumption in Thailand. Reg. Stud. Mar. Sci. 2023, 67, 103203; https://doi.org/10.1016/j.rsma.2023.103203.Suche in Google Scholar
10. Rojas-Jimenez, K.; Villalobos-Rojas, F.; Gatgens-García, J.; Rodríguez-Arias, M.; Hernández-Montero, N.; Wehrtmann, I. S. Presence of Microplastics in Six Bivalve Species (Mollusca, Bivalvia) Commercially Exploited at the Pacific Coast of Costa Rica, Central America. Mar. Pollut. Bull. 2022, 183, 114040; https://doi.org/10.1016/j.marpolbul.2022.114040.Suche in Google Scholar PubMed
11. Mishra, S.; Rath, C. C.; Das, A. P. Marine Microfiber Pollution: A Review on Present Status and Future Challenges. Mar. Pollut. Bull. 2019, 140, 188; https://doi.org/10.1016/j.marpolbul.2019.01.039.Suche in Google Scholar PubMed
12. Rout, S.; Yadav, S.; Joshi, V.; Karpe, R.; Pulhani, V.; Kumar, A. V. Microplastics as Vectors of Radioiodine in the Marine Environment: A Study on Sorption and Interaction Mechanism. Environ. Pollut. 2022, 307; https://doi.org/10.1016/j.envpol.2022.119432.Suche in Google Scholar PubMed
13. Sun, T.; Wang, S.; Ji, C.; Li, F.; Wu, H. Microplastics Aggravate the Bioaccumulation and Toxicity of Coexisting Contaminants in Aquatic Organisms: A Synergistic Health Hazard. J. Hazard. Mater. 2022, 424; https://doi.org/10.1016/j.jhazmat.2021.127533.Suche in Google Scholar PubMed
14. Sendra, M.; Sparaventi, E.; Novoa, B.; Figueras, A. An Overview of the Internalization and Effects of Microplastics and Nanoplastics as Pollutants of Emerging Concern in Bivalves. Sci. Total Environ. 2021, 753, 142024; https://doi.org/10.1016/j.scitotenv.2020.142024.Suche in Google Scholar PubMed
15. Yang, X.; Man, Y. B.; Wong, M. H.; Owen, R. B.; Chow, K. L. Environmental Health Impacts of Microplastics Exposure on Structural Organization Levels in the Human Body. Sci. Total Environ. 2022, 825, 154025; https://doi.org/10.1016/j.scitotenv.2022.154025.Suche in Google Scholar PubMed
16. Chang, X.; Wang, W. X. In Vivo Bioaccumulation and Responses of Hemocytes of Mussels Perna Viridis to Microplastics and Nanoplastics Exposure. J. Hazard. Mater. 2024, 480, 135939; https://doi.org/10.1016/j.jhazmat.2024.135939.Suche in Google Scholar PubMed
17. Munir, M.; Nur Sholikhah, U.; Lestari, E.; Pujiyanto, A.; Eka Prasetya, K.; Nurmanjaya, A.; Agung Sarwono, D.; Subechi, M.; Suseno, H. Iodine-131 Radiolabeled Polyvinylchloride: A Potential Radiotracer for Micro and Nanoplastics Bioaccumulation and Biodistribution Study in Organisms. Mar. Pollut. Bull. 2023, 188, 114627; https://doi.org/10.1016/j.marpolbul.2023.114627.Suche in Google Scholar PubMed
18. Munir, M.; Subechi, M.; Nurmanjaya, A.; Prasetya, K. E.; Rindiyantono, F.; Chairuman, P. C.; Suseno, H.; Yanto; Pujiyanto, A.; Setiawan, H.; Sarwono, D. A.; Sarmini, E.; Fara, M. E.; Suseno, H. Development of a Polystyrene-Based Microplastic Model for Bioaccumulation and Biodistribution Study Using Radiotracing and Nuclear Analysis Method. Mar. Pollut. Bull. 2024, 201, 116283; https://doi.org/10.1016/j.marpolbul.2024.116283.Suche in Google Scholar PubMed
19. Susetyo, A.; Suseno, H.; Muslim, M.; Munir, M.; Pujiyanto, A.; Yusof, N. F. B. Microplastic Bioaccumulation by Tiger Snail (Babylonia Spirata): Application of Nuclear Technique Capability Using Polystyrene Labelled with Radiotracer 65Zn. Ilmu Kelaut. 2023, 28, 81; https://doi.org/10.14710/ik.ijms.28.1.81-89.Suche in Google Scholar
20. Suseno, H. Capability of Catfish (Clarias gariepinus) to Accumulate Hg2+ from Water. Aceh Int. J. Sci. Technol. 2015, 4, 93; https://doi.org/10.13170/aijst.4.3.3018.Suche in Google Scholar
21. Hartmann, N. B.; Hu, T.; Thompson, R. C.; Hassello, M.; Verschoor, A.; Daugaard, A. E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; Herrling, M. P.; Hess, M. C.; Ivleva, N. P.; Lusher, A. L.; Wagner, M. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. 9, 72 (2020); https://doi.org/10.3390/foods9010072.Suche in Google Scholar PubMed PubMed Central
22. McLeod, J. S.; Paterson, A. H. J.; Bronlund, J. E.; Jones, J. R. The Effect of Agitation on the Nucleation of α-lactose Monohydrate. Int. Dairy J. 2016, 61, 114; https://doi.org/10.1016/j.idairyj.2016.04.007.Suche in Google Scholar
23. Budiawan, B.; Asrini, M. W.; Prihatiningsih, W. R.; Suseno, H. The Impact of242Pu Speciation on the Bioaccumulation of Plutonium by Babylonia Spirata from Jakarta Bay. Indones. J. Chem. 2021, 21, 1158; https://doi.org/10.22146/ijc.63502.Suche in Google Scholar
24. Miller, M. E.; Motti, C. A.; Hamann, M.; Kroon, F. J. Assessment of Microplastic Bioconcentration, Bioaccumulation and Biomagnification in a Simple Coral Reef Food Web. Sci. Total Environ. 2023, 858, 159615; https://doi.org/10.1016/j.scitotenv.2022.159615.Suche in Google Scholar PubMed
25. Zheng, S.; Tang, B. Z.; Wang, W. X. Microplastics and Nanoplastics Induced Differential Respiratory Damages in tilapia Fish Oreochromis niloticus. J. Hazard. Mater. 2024, 465, 133181; https://doi.org/10.1016/j.jhazmat.2023.133181.Suche in Google Scholar PubMed
26. Bhatt, V.; Chauhan, J. S. Microplastic in Freshwater Ecosystem: Bioaccumulation, Trophic Transfer, and Biomagnification. Environ. Sci. Pollut. Res. 2023, 30, 9389; https://doi.org/10.1007/s11356-022-24529-w.Suche in Google Scholar PubMed
27. Budiawan; Febriana, N. H.; Suseno, H. The Ability of Green Mussels (Perna Viridis) to Accumulate Plutonium through Sea Water Pathway. J. Kim. Valensi. 2019, 5, 63; https://doi.org/10.15408/jkv.v5i1.7730.Suche in Google Scholar
28. Pourmozaffar, S.; Tamadoni Jahromi, S.; Rameshi, H.; Sadeghi, A.; Bagheri, T.; Behzadi, S.; Gozari, M.; Zahedi, M. R.; Abrari Lazarjani, S. The Role of Salinity in Physiological Responses of Bivalves. Rev. Aquac. 2020, 12, 1548; https://doi.org/10.1111/raq.12397.Suche in Google Scholar
29. Silvestre, J. A.; Pires, S. F. S.; Pereira, V.; Colaço, M.; Costa, A. P. L.; Soares, A. M. V. M.; Matias, D.; Bettencourt, F.; Fernández-Boo, S.; Rocha, R. J. M.; Rodrigues, A. C. M. Meeting the Salinity Requirements of the Bivalve Mollusc crassostrea Gigas in the Depuration Process and Posterior Shelf-Life Period to Improve Food Safety and Product Quality. Water (Switzerland) 2021, 13; https://doi.org/10.3390/w13081126.Suche in Google Scholar
30. Rodrigues, C. C.; Salla, R. F.; Rocha, T. L. Bioaccumulation and Ecotoxicological Impact of Micro(nano)plastics in Aquatic and Land Snails: Historical Review, Current Research and Emerging Trends. J. Hazard. Mater. 2023, 444, 130382; https://doi.org/10.1016/j.jhazmat.2022.130382.Suche in Google Scholar PubMed
31. Song, Y.; Cao, C.; Qiu, R.; Hu, J.; Liu, M.; Lu, S.; Shi, H.; Raley-Susman, K. M.; He, D. Uptake and Adverse Effects of Polyethylene Terephthalate Microplastics Fibers on Terrestrial Snails (Achatina fulica) after Soil Exposure. Environ. Pollut. 2019, 250, 447; https://doi.org/10.1016/j.envpol.2019.04.066.Suche in Google Scholar PubMed
32. Fang, C.; Zheng, R.; Hong, F.; Chen, S.; Chen, G.; Zhang, M.; Gao, F.; Chen, J.; Bo, J. First Evidence of Meso- and Microplastics on the Mangrove Leaves Ingested by Herbivorous Snails and Induced Transcriptional Responses. Sci. Total Environ. 2023, 865, 161240; https://doi.org/10.1016/j.scitotenv.2022.161240.Suche in Google Scholar PubMed
33. Li, Y.; Lin, X.; Wang, J.; Xu, G.; Yu, Y. Mass-based Trophic Transfer of Polystyrene Nanoplastics in the Lettuce-Snail Food Chain. Sci. Total Environ. 2023, 897, 165383; https://doi.org/10.1016/j.scitotenv.2023.165383.Suche in Google Scholar PubMed
34. Putri, F. T.; Patria, M. P. Microplastic in Mangrove Horn Snail Telescopium Telescopium (Linnaeus, 1758) at Mangrove Ecosystem, Rambut Island, Jakarta Bay, Indonesia. J. Phys. Conf. Ser. 2021, 1725, 012045; https://doi.org/10.1088/1742-6596/1725/1/012045.Suche in Google Scholar
35. Blackmore, G.; Wang, W. X. Uptake and Efflux of Cd and Zn by the Green Mussel Perna Viridis after Metal Preexposure. Environ. Sci. Technol. 2002, 36, 989; https://doi.org/10.1021/es0155534.Suche in Google Scholar PubMed
36. Kim, D.; Kim, S. A.; Nam, S. H.; Kwak, J.Il; Kim, L.; Lee, T. Y.; Kim, H.; An, S.; An, Y. J. Microplastic Ingestion in Aquatic and Soil Biota: A Comprehensive Review of Laboratory Studies on Edible Size and Intake Pattern. Mar. Pollut. Bull. 2024, 200, 116056; https://doi.org/10.1016/j.marpolbul.2024.116056.Suche in Google Scholar PubMed
37. Guerrera, M. C.; Aragona, M.; Porcino, C.; Fazio, F.; Laurà, R.; Levanti, M.; Montalbano, G.; Germanà, G.; Abbate, F.; Germanà, A. Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. Appl. Sci. 2021, 11, 5768, Page 5768. 11, (2021); https://doi.org/10.3390/app11135768.Suche in Google Scholar
38. Galih, S. H.; Muslim, M.; Suseno, H.; Subechi, M.; Chairuman, C.; Marlina, M.; Munir, M. Determining Microplastics Bioaccumulation in Babylonia Spirata Adopting Nuclear Analysis Technique. Toxicol. Environ. Chem. 2025, 107, 135; https://doi.org/10.1080/02772248.2025.2450438.Suche in Google Scholar
39. Im, C.; Kim, H.; Zaheer, J.; Kim, J. Y.; Lee, Y. J.; Kang, C. M.; Kim, J. S. PET Tracing of Biodistribution for Orally Administered 64Cu-Labeled Polystyrene in Mice. J. Nucl. Med. 2022, 63, 461; https://doi.org/10.2967/jnumed.120.256982.Suche in Google Scholar PubMed PubMed Central
40. Keinänen, O.; Dayts, E. J.; Rodriguez, C.; Sarrett, S. M.; Brennan, J. M.; Sarparanta, M.; Zeglis, B. M. Harnessing PET to Track Micro- and Nanoplastics In Vivo. Sci. Rep. 2021, 11; https://doi.org/10.1038/s41598-021-90929-6.Suche in Google Scholar PubMed PubMed Central
41. Yan, Z.; Zhao, H.; Zhu, P.; Wang, Y.; Hou, J.; Lu, G.; He, C. Polystyrene Microplastics Alter the Trophic Transfer and Biotoxicity of Fluoxetine in an Aquatic Food Chain. J. Hazard. Mater. 2024, 470, 134179; https://doi.org/10.1016/j.jhazmat.2024.134179.Suche in Google Scholar PubMed
42. Habumugisha, T.; Zhang, Z.; Fang, C.; Yan, C.; Zhang, X. Uptake, Bioaccumulation, Biodistribution and Depuration of Polystyrene Nanoplastics in Zebrafish (Danio rerio). Sci. Total Environ. 2023, 893, 164840; https://doi.org/10.1016/j.scitotenv.2023.164840.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics
Artikel in diesem Heft
- Frontmatter
- Original Papers
- First principles modeling of plutonium complexation in nitric and hydrochloric acid solutions
- Positron emission intensity in the decay of 72As for use in PET studies
- The application of nuclear technique for measuring the bioaccumulation of microplastic in oyster (Crassostera Gigas)
- Synthesis and radiolabelling studies of hynic conjugated PSMA targeting ligands
- Impact of gamma and electron-beam irradiations on the thermal dehydration process of europium acetate hydrate
- Synthesis, mechanical, and radiation-attenuation characteristics of aluminium phosphate glass system modified by NiO/Li2O
- Preparation, physical, structural, and radiation shielding characteristics of SiO2–TiO2–B2O3–ZrO2 glass ceramics