Startseite Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan

  • Ulugbek Tukhtaev , Shakhboz Khasanov ORCID logo EMAIL logo , Jaloliddin Fayzullayev , Akmal Safarov , Bayramali Togaev und Seyedkarim Afsharipour
Veröffentlicht/Copyright: 12. Januar 2024

Abstract

We conducted a comprehensive assessment of the Kattakurgan reservoir, alongside adjacent wells and boreholes, to measure the concentrations of natural radionuclides, heavy metals, and associated radiological hazards. Using NaI(Tl) crystal scintillation gamma spectrometers, we determined radionuclide levels in water and sediment. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for heavy metal analysis. Our results showed radionuclide concentrations in reservoir water for 226Ra (0.8 Bq/L), 232Th (0.4 Bq/L), and 40K (0.4 Bq/L) were within the limits set by the World Health Organization (WHO). In contrast, deep well water samples showed elevated 226Ra concentrations (1.5 Bq/L). Sediment samples’ radionuclide levels were in line with UNSCEAR guidelines. Barium was the most notable heavy metal, with a concentration of 68.08 μg/L. While most radiation hazard indices remained within safety limits, the gamma index recorded a value of 1.057 Bq/kg. Our research provides valuable data for water quality assessment. The methods described can be applied to other reservoir studies. Regular monitoring is recommended for continuous safety evaluation, and further studies on biotic samples are suggested to enhance understanding of the reservoir’s ecosystem health.


Corresponding author: Shakhboz Khasanov, Samarkand State University, Samarkand 140104, Uzbekistan; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; and University of Chinese Academy of Sciences, Beijing 100049, China, E-mail:
Ulugbek Tukhtaev and Shakhboz Khasanov contributed equally to this work.

Acknowledgments

The authors extend their gratitude to the scientific staff and directors of the Laboratory for Inorganic and Organic Chemistry at the Technical University of Darmstadt for their assistance in determining the heavy metal concentrations in the water samples using ICP-MS mass spectrometers.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Griebler, C., Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 2015, 34, 355; https://doi.org/10.1086/679903.Suche in Google Scholar

2. Bhateria, R., Jain, D. Water quality assessment of lake water: a review. Sustain. Water Resour. Manag. 2016, 2, 161; https://doi.org/10.1007/s40899-015-0014-7.Suche in Google Scholar

3. García-Tejero, I. F., Durán-Zuazo, V. H., Muriel-Fernández, J. L., Rodríguez-Pleguezuelo, C. R. Water and Sustainable Agriculture BT, Vol. 1, Springer: Dordrecht, The Netherlands, 2011; p. 1.10.1007/978-94-007-2091-6_1Suche in Google Scholar

4. Puzanov, A. V., Baboshkina, S. V., Gorbachev, I. V. Concentration and distribution of major macro- and microelements in surface waters in the Altai. Water Resour. 2015, 42, 340; https://doi.org/10.1134/s009780781503015x.Suche in Google Scholar

5. Hossain, F. Natural and anthropogenic radionuclides in water and wastewater: sources, treatments and recoveries. J. Environ. Radioact. 2020, 225, 106423; https://doi.org/10.1016/j.jenvrad.2020.106423.Suche in Google Scholar PubMed

6. Canu, I. G., Laurent, O., Pires, N., Laurier, D., Dublineau, I. Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environ. Health Perspect. 2011, 119, 1676; https://doi.org/10.1289/ehp.1003224.Suche in Google Scholar PubMed PubMed Central

7. Milvy, P., Cothern, R. Scientific background for the development of regulations for radionuclides in drinking water. In Radon, radium and uranium in drinking water; Milvy, P., Cothern, R., Eds.; Lewis Publishers: Chelsea, Mich, Michigan, 1990.Suche in Google Scholar

8. Nuccetelli, C., Rusconi, R., Forte, M. Radioactivity in drinking water: regulations, monitoring results and radiation protection issues. Ann. Ist. Super Sanita 2012, 48, 362; https://doi.org/10.4415/ann_12_04_04.Suche in Google Scholar PubMed

9. Dinh Chau, N., Dulinski, M., Jodlowski, P., Nowak, J., Rozanski, K., Sleziak, M., Wachniew, P. Natural radioactivity in groundwater – a review. Isot. Environ. Health Stud. 2011, 47, 415; https://doi.org/10.1080/10256016.2011.628123.Suche in Google Scholar PubMed

10. Grande, S., Risica, S. Radionuclides in Drinking water: the recent legislative requirements of the European Union. J. Radiol. Prot. 2014, 35, 1; https://doi.org/10.1088/0952-4746/35/1/1.Suche in Google Scholar PubMed

11. Telloli, C., Rizzo, A., Salvi, S., Pozzobon, A., Marrocchino, E., Vaccaro, C. Characterization of groundwater recharge through tritium measurements. Adv. Geosci. 2022, 57, 21; https://doi.org/10.5194/adgeo-57-21-2022.Suche in Google Scholar

12. Okada, S., Momoshima, N. Overview of tritium: characteristics, sources, and problems. Health Phys. 1993, 65, 595; https://doi.org/10.1097/00004032-199312000-00001.Suche in Google Scholar PubMed

13. Eyrolle, F., Ducros, L., Le Dizès, S., Beaugelin-Seiller, K., Charmasson, S., Boyer, P., Cossonnet, C. An updated review on tritium in the environment. J. Environ. Radioact. 2018, 181, 128; https://doi.org/10.1016/j.jenvrad.2017.11.001.Suche in Google Scholar PubMed

14. Broinowski, A. Fukushima: Life and the transnationality of radioactive contamination. Asia Pac. J. 2013, 11, 31.Suche in Google Scholar

15. Hasegawa, K. Facing nuclear risks: lessons from the fukushima nuclear disaster. Int. J. Jpn. Sociol. 2012, 21, 84; https://doi.org/10.1111/j.1475-6781.2012.01164.x.Suche in Google Scholar

16. Appleton, J. D. Radon in air and water. In Essentials of Medical Geology: Revised Edition; Springer: Netherlands, 2012; pp. 239–277.10.1007/978-94-007-4375-5_11Suche in Google Scholar

17. Vulinović, J., Vuković, S., Pelemiš, S., Rajić, D. Radon in the water. Contemp. Mater. 2020, 11, 62–73; https://doi.org/10.7251/comen2001062v.Suche in Google Scholar

18. Lauria, D. C., Godoy, J. M. Abnormal high natural radium concentration in surface waters. J. Environ. Radioact. 2002, 61, 159; https://doi.org/10.1016/s0265-931x(01)00123-0.Suche in Google Scholar PubMed

19. Isam Salih, M. M., Pettersson, H. B. L., Lund, E. Uranium and thorium series radionuclides in drinking water from drilled Bedrock wells: correlation to geology and Bedrock radioactivity and dose estimation. Radiat. Protect. Dosim. 2002, 102, 249; https://doi.org/10.1093/oxfordjournals.rpd.a006093.Suche in Google Scholar PubMed

20. Vengosh, A., Hirschfeld, D., Vinson, D., Dwyer, G., Raanan, H., Rimawi, O., Al-Zoubi, A., Akkawi, E., Marie, A., Haquin, G., Zaarur, S., Ganor, J. High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ. Sci. Technol. 2009, 43, 1769; https://doi.org/10.1021/es802969r.Suche in Google Scholar PubMed

21. Nelson, A. W., Knight, A. W., Eitrheim, E. S., Schultz, M. K. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. J. Environ. Radioact. 2015, 142, 24; https://doi.org/10.1016/j.jenvrad.2015.01.004.Suche in Google Scholar PubMed PubMed Central

22. Levin, R. B., Epstein, P. R., Ford, T. E., Harrington, W., Olson, E., Reichard, E. G. U.S. Drinking water challenges in the twenty-first century. Environ. Health Perspect. 2002, 110, 43; https://doi.org/10.1289/ehp.02110s143.Suche in Google Scholar PubMed PubMed Central

23. Naja, G. M., Volesky, B. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. Heavy Met. Environ. 2009, 8, 16.10.1201/9781420073195.ch2Suche in Google Scholar

24. Lima, P. D. L., Vasconcellos, M. C., Montenegro, R. C., Bahia, M. O., Costa, E. T., Antunes, L. M. G., Burbano, R. R. Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: a review of the literature. Hum. Exp. Toxicol. 2011, 30, 1435; https://doi.org/10.1177/0960327110396531.Suche in Google Scholar PubMed

25. Asghari Moghaddam, A., Adigozalpuor, A. Investigation of aluminum, iron, manganese, chromium and cadmium concentrations in groundwater of Oshnavieh plain. Iran. J. Ecohydrol. 2016, 3, 167.Suche in Google Scholar

26. Budi, H. S., Catalan Opulencia, M. J., Afra, A., Abdelbasset, W. K., Abdullaev, D., Majdi, A., Taherian, M., Ekrami, H. A., Mohammadi, M. J. Source, toxicity and carcinogenic health risk assessment of heavy metals. Rev. Environ. Health. 2022; https://doi.org/10.1515/reveh-2022-0096.Suche in Google Scholar PubMed

27. Bird Life, I. Important Bird Area Factsheet: Kattakurgan Reservoir, 2024. [Online] http://datazone.birdlife.org/site/factsheet/kattakurgan-reservoir-iba-uzbekistan (accessed Jan 1, 2024).Suche in Google Scholar

28. Tsipinova, B. S. Ecological State of Soils and Changes in the Land Fund of the Coastal Zone of the Krasnodar Reservoir of the Republic of Adygea; Adyghea State University: Maykop, Russia, 2002; pp. 1–125.Suche in Google Scholar

29. Cavalcante, H., Araújo, F., Noyma, N. P., Becker, V. Phosphorus fractionation in sediments of tropical semiarid reservoirs. Sci. Total Environ. 2018, 619, 1022; https://doi.org/10.1016/j.scitotenv.2017.11.204.Suche in Google Scholar PubMed

30. Kholikulov, S.T., Ortikov, T. K. Current state of the zarafshan oasis and measures to improve it. In Materials of the 5th Meeting of the Society of Soil Scientists and Agrochemists of Uzbekistan; Soil Science and Agrochemical Scientific Research Institute: Tashkent, Uzbekistan, 2010.Suche in Google Scholar

31. Erickson, A. J., Weiss, P. T., Gulliver, J. S. Water sampling methods. In Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance; Erickson, A. J., Weiss, P. T., Gulliver, J. S., Eds.; Springer New York: New York, NY, 2013.10.1007/978-1-4614-4624-8Suche in Google Scholar

32. Yasir, M. S., Abd Majid, A., Ahmad Kabir, N., Yahya, R. Kandungan logam berat dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen di bekas tapak lombong. Malaysian J. Anal. Sci. 2008, 12, 172.Suche in Google Scholar

33. Nasirian, M., Bahari, I., Abdullah, P. Assessment of natural radioactivity in water and sediment from Amang (Tin Tailing) processing ponds. Malaysian J. Anal. Sci. 2008, 12, 150.Suche in Google Scholar

34. Tukhtaev, U., Khasanov, S., Safarov, A., Proshad, R. Assessment of radioactivity of the Sobirsoy reservoir and adjacent areas of the Nurabad district, Uzbekistan. Radiochim. Acta. 2023, 111, 781; https://doi.org/10.1515/ract-2023-0153.Suche in Google Scholar

35. Azimov, A. N., Hushmuradov, S. K., Muminov, I. T., Muminov, T. M., Osmanov, B. S., Safarov, A. N., Safarov, A. A. Gamma-spectrometric determination of natural radionuclides and 137Cs concentrations in environmental samples. The Improved Scintillation Technique. Radiat. Meas. 2008, 43, 66; https://doi.org/10.1016/j.radmeas.2007.11.006.Suche in Google Scholar

36. Harb, S., Abbady, A., El-Kamel, A. H., Abd El-Mageed, A. I., Rashed, W. Concentration of U-238, U-235, Ra-226, Th-232 and K-40 for some granite samples in eastern desert of Egypt. In Proceedings of the Third Environmental Physics Conference (EPC-2008), Egypt, 2009.Suche in Google Scholar

37. OECD. Organization for economic cooperation and development. Exposure to Radiation from the Natural Radioactivity in Building Materials. Report by a Group of Experts; Nuclear Energy Agency: Paris, France, 1979.Suche in Google Scholar

38. Gupta, M., Chauhan, R. P., Garg, A., Kumar, S., Sonkawade, R. G. Estimation of radioactivity in some sand and soil samples. Indian J. Pure Appl. Phys. 2010, 48, 482.Suche in Google Scholar

39. Diab, H. M., Nouh, S. A., Hamdy, A., El-Fiki, S. A. Evaluation of natural radioactivity in a cultivated area around a fertilizer factory. Nucl. Radiat. Phys. 2008, 3, 53.Suche in Google Scholar

40. UNSCEAR. Sources and Effects of Ionizing Radiation. Annex A: Concepts and Quantities in the Assessment of Human Exposures. UNSCEAR: New York, 1977; pp. 1–514.Suche in Google Scholar

41. Charles, M. UNSCEAR report 2000: sources and effects of ionizing radiation. J. Radiol. Prot. 2001, 21, 83; https://doi.org/10.1088/0952-4746/21/1/609.Suche in Google Scholar PubMed

42. UNSCEAR. Sources and effects of ionizing radiation, United Nations Scientific Committee on the effect of atomic radiation report vol. 1 to the general assembly, with scientific annexes. UNSCEAR 2000 report 2000, 1, 1–659.Suche in Google Scholar

43. UNSCEAR. Sources and effects of ionizing radiation, ANNEX B, exposures from natural radiation sources. UNSCEAR 2000 report 2000, 1, 1–97.Suche in Google Scholar

44. Hirner, A. V., Ashraf, M. A., Sarfraz, M., Naureen, R., Gharibreza, M. Environmental impacts of metallic elements: speciation, bioavailability and remediation. Environ. Earth Sci. 2016, 75, 1183; https://doi.org/10.1007/s12665-016-5893-x.Suche in Google Scholar

45. NAHRIM. National Lake Water Quality Criteria and Standards. Malaysia, 2015. [Online] http://www.nahrim.gov.my/en/publications/listofpublications/1195-national-lake-water-quality-criteria-andstandards.html (accessed Jan 1, 2024).Suche in Google Scholar

46. Chapman, D. V.. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: London, 2021; p. 656.10.1201/9781003062103Suche in Google Scholar

47. Van Schmus, W. R. Natural radioactivity of the crust and mantle. In Global Earth Physics: A Handbook of Physical Constants; Ahrens, T. J., Ed.; American Geophysical Union: Washington, DC, New Mexico, 1995.Suche in Google Scholar

48. Kathren, R. L. NORM sources and their origins. Appl. Radiat. Isot. 1998, 49, 149; https://doi.org/10.1016/s0969-8043(97)00237-6.Suche in Google Scholar PubMed

49. Boyle, R. W. Geochemical prospecting for uranium and thorium deposits. At. Energy Rev. 1980, 18, 3.Suche in Google Scholar

50. Azimov, A. N., Safarov, A. A., Safarov, A. N., Inoyatov, A. K., Muminov, I. T., Rashidova, D. S. Radioactivity of natural waters in Nurabad district of Samarkand region. At. Energy. 2015, 118, 222; https://doi.org/10.1007/s10512-015-9982-9.Suche in Google Scholar

51. WHO. Guidelines for drinking-water quality. World Heal. Organ. 2011, 216, 303.Suche in Google Scholar

52. MEQR. Malaysia Environmental Quality Report; Sasyaz Holdings Sdn Bhd: Petaling Jaya, 2010; pp. 1–80.Suche in Google Scholar

53. Inoyatov, A. K., Muminov, I. T., Mukhamedov, A. K., Rashidova, D. S., Osmanov, B. S., Safarov, A. A., Safarov, A. N., Khushmurodov, S. K. Radionuclides in the environment of Nuratau. J. Radioanal. Nucl. Chem. 2007, 273, 497; https://doi.org/10.1007/s10967-007-6708-z.Suche in Google Scholar

54. Jura, K. O., Shvetsova, D. A., Lyakhova, N. V. Radionuclide content in bottom sediments of the Tsimlyansk reservoir. In Twenty-sixth All-Russian Scientific Conference of Physics Students and Young Scientists. VNKSF-26.—Ufa, 2020. ООО “Альтаир”; Lobachevsky University, 2020.Suche in Google Scholar

55. Korovina, O. Y., Somin, V. A. Environmental state of surface waters and bottom sediments in water bodies of the southwestern Part of the Altai territory. Bull. Natl. Nucl. Cent. Repub. Kazakhstan 2022, 43, 43–45; https://doi.org/10.52676/1729-7885-2022-1-43-45.Suche in Google Scholar

56. Duong, V.-H., Duong, D.-T., Van Bui, L., Kim, T. T., Bui, H. M., Tran, T. D., Phan, T. T., Nguyen, T.-D. Radiological hazard assessment of high-level natural radionuclides in surface sediments along Red River, Vietnam. Arch. Environ. Contam. Toxicol. 2023, 1, 302–313; https://doi.org/10.1007/s00244-023-01003-3.Suche in Google Scholar PubMed

57. Ergül, H. A., Belivermiş, M., Kılıç, Ö., Topcuoğlu, S., Çotuk, Y. Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J. Environ. Radioact. 2013, 126, 125; https://doi.org/10.1016/j.jenvrad.2013.07.015.Suche in Google Scholar PubMed

58. Alokhina, T., Gudzenko, V. Distribution of radionuclides in modern sediments of the rivers flowing into the Dnieper-Bug estuary. In E3S Web of Conferences; EDP Sciences: Les Ulis, 2021.10.31812/123456789/4617Suche in Google Scholar

59. EPA, E.S.A. United States Environmental Protection Agency, 2009. Proc. Water Environ. Fed. 2012, 2005, 726.10.2175/193864705783867675Suche in Google Scholar

60. AS-Subaihi, F. A., Salem, T. A. A., Ahmed, M. I. Assessment of natural radioactivity level and associated radiological hazards in marine sediment samples collected from Abyan Beach, Gulf of Aden, Yemen. Electron. J. Univ. Aden Basic Appl. Sci. 2023, 4, 18; https://doi.org/10.47372/ejua-ba.2023.1.217.Suche in Google Scholar

61. Hasson, M. K., Ali, K. K., Al-Kubaisi, Q. Y. Determining of radioactivity and the accompanying radiological hazards in the sediments of the Euphrates River and wells in Babylon governorate – Iraq. Int. J. Health Sci. 2022, 6, 9007; https://doi.org/10.53730/ijhs.v6ns6.12379.Suche in Google Scholar

62. Radiation, U.N.S.C. on the E. of A. Sources and Effects of Ionizing Radiation, ANNEX B, Exposures from Natural Radiation Sources; United Nations: New York, 2000; pp. 97–99.Suche in Google Scholar

Received: 2023-11-17
Accepted: 2024-01-02
Published Online: 2024-01-12
Published in Print: 2024-02-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0254/html
Button zum nach oben scrollen