Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan
-
Ulugbek Tukhtaev
, Jaloliddin Fayzullayev
Abstract
We conducted a comprehensive assessment of the Kattakurgan reservoir, alongside adjacent wells and boreholes, to measure the concentrations of natural radionuclides, heavy metals, and associated radiological hazards. Using NaI(Tl) crystal scintillation gamma spectrometers, we determined radionuclide levels in water and sediment. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for heavy metal analysis. Our results showed radionuclide concentrations in reservoir water for 226Ra (0.8 Bq/L), 232Th (0.4 Bq/L), and 40K (0.4 Bq/L) were within the limits set by the World Health Organization (WHO). In contrast, deep well water samples showed elevated 226Ra concentrations (1.5 Bq/L). Sediment samples’ radionuclide levels were in line with UNSCEAR guidelines. Barium was the most notable heavy metal, with a concentration of 68.08 μg/L. While most radiation hazard indices remained within safety limits, the gamma index recorded a value of 1.057 Bq/kg. Our research provides valuable data for water quality assessment. The methods described can be applied to other reservoir studies. Regular monitoring is recommended for continuous safety evaluation, and further studies on biotic samples are suggested to enhance understanding of the reservoir’s ecosystem health.
Acknowledgments
The authors extend their gratitude to the scientific staff and directors of the Laboratory for Inorganic and Organic Chemistry at the Technical University of Darmstadt for their assistance in determining the heavy metal concentrations in the water samples using ICP-MS mass spectrometers.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Griebler, C., Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 2015, 34, 355; https://doi.org/10.1086/679903.Search in Google Scholar
2. Bhateria, R., Jain, D. Water quality assessment of lake water: a review. Sustain. Water Resour. Manag. 2016, 2, 161; https://doi.org/10.1007/s40899-015-0014-7.Search in Google Scholar
3. García-Tejero, I. F., Durán-Zuazo, V. H., Muriel-Fernández, J. L., Rodríguez-Pleguezuelo, C. R. Water and Sustainable Agriculture BT, Vol. 1, Springer: Dordrecht, The Netherlands, 2011; p. 1.10.1007/978-94-007-2091-6_1Search in Google Scholar
4. Puzanov, A. V., Baboshkina, S. V., Gorbachev, I. V. Concentration and distribution of major macro- and microelements in surface waters in the Altai. Water Resour. 2015, 42, 340; https://doi.org/10.1134/s009780781503015x.Search in Google Scholar
5. Hossain, F. Natural and anthropogenic radionuclides in water and wastewater: sources, treatments and recoveries. J. Environ. Radioact. 2020, 225, 106423; https://doi.org/10.1016/j.jenvrad.2020.106423.Search in Google Scholar PubMed
6. Canu, I. G., Laurent, O., Pires, N., Laurier, D., Dublineau, I. Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environ. Health Perspect. 2011, 119, 1676; https://doi.org/10.1289/ehp.1003224.Search in Google Scholar PubMed PubMed Central
7. Milvy, P., Cothern, R. Scientific background for the development of regulations for radionuclides in drinking water. In Radon, radium and uranium in drinking water; Milvy, P., Cothern, R., Eds.; Lewis Publishers: Chelsea, Mich, Michigan, 1990.Search in Google Scholar
8. Nuccetelli, C., Rusconi, R., Forte, M. Radioactivity in drinking water: regulations, monitoring results and radiation protection issues. Ann. Ist. Super Sanita 2012, 48, 362; https://doi.org/10.4415/ann_12_04_04.Search in Google Scholar PubMed
9. Dinh Chau, N., Dulinski, M., Jodlowski, P., Nowak, J., Rozanski, K., Sleziak, M., Wachniew, P. Natural radioactivity in groundwater – a review. Isot. Environ. Health Stud. 2011, 47, 415; https://doi.org/10.1080/10256016.2011.628123.Search in Google Scholar PubMed
10. Grande, S., Risica, S. Radionuclides in Drinking water: the recent legislative requirements of the European Union. J. Radiol. Prot. 2014, 35, 1; https://doi.org/10.1088/0952-4746/35/1/1.Search in Google Scholar PubMed
11. Telloli, C., Rizzo, A., Salvi, S., Pozzobon, A., Marrocchino, E., Vaccaro, C. Characterization of groundwater recharge through tritium measurements. Adv. Geosci. 2022, 57, 21; https://doi.org/10.5194/adgeo-57-21-2022.Search in Google Scholar
12. Okada, S., Momoshima, N. Overview of tritium: characteristics, sources, and problems. Health Phys. 1993, 65, 595; https://doi.org/10.1097/00004032-199312000-00001.Search in Google Scholar PubMed
13. Eyrolle, F., Ducros, L., Le Dizès, S., Beaugelin-Seiller, K., Charmasson, S., Boyer, P., Cossonnet, C. An updated review on tritium in the environment. J. Environ. Radioact. 2018, 181, 128; https://doi.org/10.1016/j.jenvrad.2017.11.001.Search in Google Scholar PubMed
14. Broinowski, A. Fukushima: Life and the transnationality of radioactive contamination. Asia Pac. J. 2013, 11, 31.Search in Google Scholar
15. Hasegawa, K. Facing nuclear risks: lessons from the fukushima nuclear disaster. Int. J. Jpn. Sociol. 2012, 21, 84; https://doi.org/10.1111/j.1475-6781.2012.01164.x.Search in Google Scholar
16. Appleton, J. D. Radon in air and water. In Essentials of Medical Geology: Revised Edition; Springer: Netherlands, 2012; pp. 239–277.10.1007/978-94-007-4375-5_11Search in Google Scholar
17. Vulinović, J., Vuković, S., Pelemiš, S., Rajić, D. Radon in the water. Contemp. Mater. 2020, 11, 62–73; https://doi.org/10.7251/comen2001062v.Search in Google Scholar
18. Lauria, D. C., Godoy, J. M. Abnormal high natural radium concentration in surface waters. J. Environ. Radioact. 2002, 61, 159; https://doi.org/10.1016/s0265-931x(01)00123-0.Search in Google Scholar PubMed
19. Isam Salih, M. M., Pettersson, H. B. L., Lund, E. Uranium and thorium series radionuclides in drinking water from drilled Bedrock wells: correlation to geology and Bedrock radioactivity and dose estimation. Radiat. Protect. Dosim. 2002, 102, 249; https://doi.org/10.1093/oxfordjournals.rpd.a006093.Search in Google Scholar PubMed
20. Vengosh, A., Hirschfeld, D., Vinson, D., Dwyer, G., Raanan, H., Rimawi, O., Al-Zoubi, A., Akkawi, E., Marie, A., Haquin, G., Zaarur, S., Ganor, J. High naturally occurring radioactivity in fossil groundwater from the Middle East. Environ. Sci. Technol. 2009, 43, 1769; https://doi.org/10.1021/es802969r.Search in Google Scholar PubMed
21. Nelson, A. W., Knight, A. W., Eitrheim, E. S., Schultz, M. K. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. J. Environ. Radioact. 2015, 142, 24; https://doi.org/10.1016/j.jenvrad.2015.01.004.Search in Google Scholar PubMed PubMed Central
22. Levin, R. B., Epstein, P. R., Ford, T. E., Harrington, W., Olson, E., Reichard, E. G. U.S. Drinking water challenges in the twenty-first century. Environ. Health Perspect. 2002, 110, 43; https://doi.org/10.1289/ehp.02110s143.Search in Google Scholar PubMed PubMed Central
23. Naja, G. M., Volesky, B. Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. Heavy Met. Environ. 2009, 8, 16.10.1201/9781420073195.ch2Search in Google Scholar
24. Lima, P. D. L., Vasconcellos, M. C., Montenegro, R. C., Bahia, M. O., Costa, E. T., Antunes, L. M. G., Burbano, R. R. Genotoxic effects of aluminum, iron and manganese in human cells and experimental systems: a review of the literature. Hum. Exp. Toxicol. 2011, 30, 1435; https://doi.org/10.1177/0960327110396531.Search in Google Scholar PubMed
25. Asghari Moghaddam, A., Adigozalpuor, A. Investigation of aluminum, iron, manganese, chromium and cadmium concentrations in groundwater of Oshnavieh plain. Iran. J. Ecohydrol. 2016, 3, 167.Search in Google Scholar
26. Budi, H. S., Catalan Opulencia, M. J., Afra, A., Abdelbasset, W. K., Abdullaev, D., Majdi, A., Taherian, M., Ekrami, H. A., Mohammadi, M. J. Source, toxicity and carcinogenic health risk assessment of heavy metals. Rev. Environ. Health. 2022; https://doi.org/10.1515/reveh-2022-0096.Search in Google Scholar PubMed
27. Bird Life, I. Important Bird Area Factsheet: Kattakurgan Reservoir, 2024. [Online] http://datazone.birdlife.org/site/factsheet/kattakurgan-reservoir-iba-uzbekistan (accessed Jan 1, 2024).Search in Google Scholar
28. Tsipinova, B. S. Ecological State of Soils and Changes in the Land Fund of the Coastal Zone of the Krasnodar Reservoir of the Republic of Adygea; Adyghea State University: Maykop, Russia, 2002; pp. 1–125.Search in Google Scholar
29. Cavalcante, H., Araújo, F., Noyma, N. P., Becker, V. Phosphorus fractionation in sediments of tropical semiarid reservoirs. Sci. Total Environ. 2018, 619, 1022; https://doi.org/10.1016/j.scitotenv.2017.11.204.Search in Google Scholar PubMed
30. Kholikulov, S.T., Ortikov, T. K. Current state of the zarafshan oasis and measures to improve it. In Materials of the 5th Meeting of the Society of Soil Scientists and Agrochemists of Uzbekistan; Soil Science and Agrochemical Scientific Research Institute: Tashkent, Uzbekistan, 2010.Search in Google Scholar
31. Erickson, A. J., Weiss, P. T., Gulliver, J. S. Water sampling methods. In Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance; Erickson, A. J., Weiss, P. T., Gulliver, J. S., Eds.; Springer New York: New York, NY, 2013.10.1007/978-1-4614-4624-8Search in Google Scholar
32. Yasir, M. S., Abd Majid, A., Ahmad Kabir, N., Yahya, R. Kandungan logam berat dan radionuklid tabii dalam ikan, air, tumbuhan dan sedimen di bekas tapak lombong. Malaysian J. Anal. Sci. 2008, 12, 172.Search in Google Scholar
33. Nasirian, M., Bahari, I., Abdullah, P. Assessment of natural radioactivity in water and sediment from Amang (Tin Tailing) processing ponds. Malaysian J. Anal. Sci. 2008, 12, 150.Search in Google Scholar
34. Tukhtaev, U., Khasanov, S., Safarov, A., Proshad, R. Assessment of radioactivity of the Sobirsoy reservoir and adjacent areas of the Nurabad district, Uzbekistan. Radiochim. Acta. 2023, 111, 781; https://doi.org/10.1515/ract-2023-0153.Search in Google Scholar
35. Azimov, A. N., Hushmuradov, S. K., Muminov, I. T., Muminov, T. M., Osmanov, B. S., Safarov, A. N., Safarov, A. A. Gamma-spectrometric determination of natural radionuclides and 137Cs concentrations in environmental samples. The Improved Scintillation Technique. Radiat. Meas. 2008, 43, 66; https://doi.org/10.1016/j.radmeas.2007.11.006.Search in Google Scholar
36. Harb, S., Abbady, A., El-Kamel, A. H., Abd El-Mageed, A. I., Rashed, W. Concentration of U-238, U-235, Ra-226, Th-232 and K-40 for some granite samples in eastern desert of Egypt. In Proceedings of the Third Environmental Physics Conference (EPC-2008), Egypt, 2009.Search in Google Scholar
37. OECD. Organization for economic cooperation and development. Exposure to Radiation from the Natural Radioactivity in Building Materials. Report by a Group of Experts; Nuclear Energy Agency: Paris, France, 1979.Search in Google Scholar
38. Gupta, M., Chauhan, R. P., Garg, A., Kumar, S., Sonkawade, R. G. Estimation of radioactivity in some sand and soil samples. Indian J. Pure Appl. Phys. 2010, 48, 482.Search in Google Scholar
39. Diab, H. M., Nouh, S. A., Hamdy, A., El-Fiki, S. A. Evaluation of natural radioactivity in a cultivated area around a fertilizer factory. Nucl. Radiat. Phys. 2008, 3, 53.Search in Google Scholar
40. UNSCEAR. Sources and Effects of Ionizing Radiation. Annex A: Concepts and Quantities in the Assessment of Human Exposures. UNSCEAR: New York, 1977; pp. 1–514.Search in Google Scholar
41. Charles, M. UNSCEAR report 2000: sources and effects of ionizing radiation. J. Radiol. Prot. 2001, 21, 83; https://doi.org/10.1088/0952-4746/21/1/609.Search in Google Scholar PubMed
42. UNSCEAR. Sources and effects of ionizing radiation, United Nations Scientific Committee on the effect of atomic radiation report vol. 1 to the general assembly, with scientific annexes. UNSCEAR 2000 report 2000, 1, 1–659.Search in Google Scholar
43. UNSCEAR. Sources and effects of ionizing radiation, ANNEX B, exposures from natural radiation sources. UNSCEAR 2000 report 2000, 1, 1–97.Search in Google Scholar
44. Hirner, A. V., Ashraf, M. A., Sarfraz, M., Naureen, R., Gharibreza, M. Environmental impacts of metallic elements: speciation, bioavailability and remediation. Environ. Earth Sci. 2016, 75, 1183; https://doi.org/10.1007/s12665-016-5893-x.Search in Google Scholar
45. NAHRIM. National Lake Water Quality Criteria and Standards. Malaysia, 2015. [Online] http://www.nahrim.gov.my/en/publications/listofpublications/1195-national-lake-water-quality-criteria-andstandards.html (accessed Jan 1, 2024).Search in Google Scholar
46. Chapman, D. V.. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: London, 2021; p. 656.10.1201/9781003062103Search in Google Scholar
47. Van Schmus, W. R. Natural radioactivity of the crust and mantle. In Global Earth Physics: A Handbook of Physical Constants; Ahrens, T. J., Ed.; American Geophysical Union: Washington, DC, New Mexico, 1995.Search in Google Scholar
48. Kathren, R. L. NORM sources and their origins. Appl. Radiat. Isot. 1998, 49, 149; https://doi.org/10.1016/s0969-8043(97)00237-6.Search in Google Scholar PubMed
49. Boyle, R. W. Geochemical prospecting for uranium and thorium deposits. At. Energy Rev. 1980, 18, 3.Search in Google Scholar
50. Azimov, A. N., Safarov, A. A., Safarov, A. N., Inoyatov, A. K., Muminov, I. T., Rashidova, D. S. Radioactivity of natural waters in Nurabad district of Samarkand region. At. Energy. 2015, 118, 222; https://doi.org/10.1007/s10512-015-9982-9.Search in Google Scholar
51. WHO. Guidelines for drinking-water quality. World Heal. Organ. 2011, 216, 303.Search in Google Scholar
52. MEQR. Malaysia Environmental Quality Report; Sasyaz Holdings Sdn Bhd: Petaling Jaya, 2010; pp. 1–80.Search in Google Scholar
53. Inoyatov, A. K., Muminov, I. T., Mukhamedov, A. K., Rashidova, D. S., Osmanov, B. S., Safarov, A. A., Safarov, A. N., Khushmurodov, S. K. Radionuclides in the environment of Nuratau. J. Radioanal. Nucl. Chem. 2007, 273, 497; https://doi.org/10.1007/s10967-007-6708-z.Search in Google Scholar
54. Jura, K. O., Shvetsova, D. A., Lyakhova, N. V. Radionuclide content in bottom sediments of the Tsimlyansk reservoir. In Twenty-sixth All-Russian Scientific Conference of Physics Students and Young Scientists. VNKSF-26.—Ufa, 2020. ООО “Альтаир”; Lobachevsky University, 2020.Search in Google Scholar
55. Korovina, O. Y., Somin, V. A. Environmental state of surface waters and bottom sediments in water bodies of the southwestern Part of the Altai territory. Bull. Natl. Nucl. Cent. Repub. Kazakhstan 2022, 43, 43–45; https://doi.org/10.52676/1729-7885-2022-1-43-45.Search in Google Scholar
56. Duong, V.-H., Duong, D.-T., Van Bui, L., Kim, T. T., Bui, H. M., Tran, T. D., Phan, T. T., Nguyen, T.-D. Radiological hazard assessment of high-level natural radionuclides in surface sediments along Red River, Vietnam. Arch. Environ. Contam. Toxicol. 2023, 1, 302–313; https://doi.org/10.1007/s00244-023-01003-3.Search in Google Scholar PubMed
57. Ergül, H. A., Belivermiş, M., Kılıç, Ö., Topcuoğlu, S., Çotuk, Y. Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey. J. Environ. Radioact. 2013, 126, 125; https://doi.org/10.1016/j.jenvrad.2013.07.015.Search in Google Scholar PubMed
58. Alokhina, T., Gudzenko, V. Distribution of radionuclides in modern sediments of the rivers flowing into the Dnieper-Bug estuary. In E3S Web of Conferences; EDP Sciences: Les Ulis, 2021.10.31812/123456789/4617Search in Google Scholar
59. EPA, E.S.A. United States Environmental Protection Agency, 2009. Proc. Water Environ. Fed. 2012, 2005, 726.10.2175/193864705783867675Search in Google Scholar
60. AS-Subaihi, F. A., Salem, T. A. A., Ahmed, M. I. Assessment of natural radioactivity level and associated radiological hazards in marine sediment samples collected from Abyan Beach, Gulf of Aden, Yemen. Electron. J. Univ. Aden Basic Appl. Sci. 2023, 4, 18; https://doi.org/10.47372/ejua-ba.2023.1.217.Search in Google Scholar
61. Hasson, M. K., Ali, K. K., Al-Kubaisi, Q. Y. Determining of radioactivity and the accompanying radiological hazards in the sediments of the Euphrates River and wells in Babylon governorate – Iraq. Int. J. Health Sci. 2022, 6, 9007; https://doi.org/10.53730/ijhs.v6ns6.12379.Search in Google Scholar
62. Radiation, U.N.S.C. on the E. of A. Sources and Effects of Ionizing Radiation, ANNEX B, Exposures from Natural Radiation Sources; United Nations: New York, 2000; pp. 97–99.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Morphology of uranium oxides reduced from magnesium and sodium diuranate
- HR GRS-HPGe as NDT method for quantification of uranium and 235U content in process stream samples from UO2 fuel production facilities
- Recycling waste polymer packaging materials as effective active carbon porous materials for uranium removal from commercial phosphoric acid
- Overcoming the obstacle of excess acetonitrile content in the final fluorine-18 radiotracers
- Radioactivity of 226Ra, 232Th and 40K in soil in Northwest part of Turkey: assessment of radiological impacts
- Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan
- Obituary
- Obituary: Jae-Il Kim (1936–2023)
Articles in the same Issue
- Frontmatter
- Original Papers
- Morphology of uranium oxides reduced from magnesium and sodium diuranate
- HR GRS-HPGe as NDT method for quantification of uranium and 235U content in process stream samples from UO2 fuel production facilities
- Recycling waste polymer packaging materials as effective active carbon porous materials for uranium removal from commercial phosphoric acid
- Overcoming the obstacle of excess acetonitrile content in the final fluorine-18 radiotracers
- Radioactivity of 226Ra, 232Th and 40K in soil in Northwest part of Turkey: assessment of radiological impacts
- Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan
- Obituary
- Obituary: Jae-Il Kim (1936–2023)