Startseite Recycling waste polymer packaging materials as effective active carbon porous materials for uranium removal from commercial phosphoric acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recycling waste polymer packaging materials as effective active carbon porous materials for uranium removal from commercial phosphoric acid

  • Saber Ibrahim , Ahmed M. Masoud EMAIL logo , Mahmoud M. El-Maadawy EMAIL logo , Hager Fahmy und Mohamed Taha
Veröffentlicht/Copyright: 1. Dezember 2023

Abstract

Plastic packaging waste is considered a serious threat to the environment due to its non-biodegradable nature. Transforming plastic waste into active carbons using pyrolysis methods could be a valuable option to solve the challenge of plastic waste. Synthesized active carbon was differentiated using zeta potential, particle size, SEM, BET, and DSC. This study also investigates the use of obtained active carbons for U(VI) removal from commercial phosphoric acid. The kinetics of adsorption were found to follow the pseudo-second-order model and intra-particle diffusion as one of the controlling mechanisms. Langmuir, and Freundlich, isotherms were employed to explore the equilibrium data. Furthermore, thermodynamic investigations revealed that uranium uptake is an endothermic, feasible, and spontaneous process. The present study concludes that plastic waste-based activated carbon could be employed as a low-cost alternative to commercial activated carbon for uranium removal from phosphoric acid and the production of green fertilizers.


Corresponding authors: Ahmed M. Masoud, and Mahmoud M. El-Maadawy, Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt, E-mail: (A.M. Masoud), (M.M. El-Maadawy)

  1. Research ethics: Not applicable.

  2. Author contributions: Ahmed Masoud: Experimental operation, Data curation & interpretation, writing – original draft – reviewing & editing. Hager Fahmy: Synthesis, Data curation & interpretation, Writing – original draft. El-Maadawy: Validation, Data curation & interpretation, Writing – original draft, reviewing & editing. Saber Ibrahim: Synthesis, Characterization, Methodology, Validation, Data curation & interpretation, Writing – original draft. Mohamed Taha: Methodology, Data curation & interpretation, Writing – original draft, reviewing & editing.

  3. Competing interests: The authors of this manuscript have no competing or conflict of interest with any person or organization.

  4. Research funding: Not applicable.

  5. Data availability: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

1. Geissler, B., Mew, M. C., Matschullat, J., Steiner, G. Innovation potential along the phosphorus supply chain: a micro and macro perspective on the mining phase. Sci. Total Environ. 2020, 714, 136701; https://doi.org/10.1016/j.scitotenv.2020.136701.Suche in Google Scholar PubMed

2. Ulrich, A. E., Schnug, E., Prasser, H. M., Frossard, E. Uranium endowments in phosphate rock. Sci. Total Environ. 2014, 478, 226; https://doi.org/10.1016/j.scitotenv.2014.01.069.Suche in Google Scholar PubMed

3. El-Zahhar, A. A., Ali, M. M., Ahmed, A. M., Khalifa, M. E., Abdel-Bary, E. M. Removal of iron from wet-process phosphoric acid using titanium silicate-polymer composite. Chem. Technol. An Indian J. 2015, 10, 210.Suche in Google Scholar

4. Kouzbour, S., Gourich, B., Gros, F., Vial, C., Allam, F., Stiriba, Y. Comparative analysis of industrial processes for cadmium removal from phosphoric acid: a review. Hydrometallurgy 2019, 188, 222; https://doi.org/10.1016/j.hydromet.2019.06.014.Suche in Google Scholar

5. Ibrahim, S. A., Masoud, A. M., Taha, M. H., Meawad, A. S. New organic compounds detection and potential removal in crude phosphoric acid using waste sludge. Int. J. Environ. Anal. Chem. 2021; https://doi.org/10.1080/03067319.2021.1959564.Suche in Google Scholar

6. Gandhi, T. P., Sampath, P. V., Maliyekkal, S. M. A critical review of uranium contamination in groundwater: treatment and sludge disposal. Sci. Total Environ. 2022, 825, 153947; https://doi.org/10.1016/j.scitotenv.2022.153947.Suche in Google Scholar PubMed

7. Morshedy, A. S., Taha, M. H., El-Aty, D. M. A., Bakry, A., El Naggar, A. M. A. Solid waste sub-driven acidic mesoporous activated carbon structures for efficient uranium capture through the treatment of industrial phosphoric acid. Environ. Technol. Innov. 2021, 21, 101363; https://doi.org/10.1016/j.eti.2021.101363.Suche in Google Scholar

8. Beltrami, D., Cote, G., Mokhtari, H., Courtaud, B., Moyer, B. A., Chagnes, A. Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem. Rev. 2014, 114, 12002; https://doi.org/10.1021/cr5001546.Suche in Google Scholar PubMed

9. Bromberg, L., Chen, R., Brown, P., Hatton, T. A. Magnetic lyogels for uranium recovery from wet phosphoric acid. Ind. Eng. Chem. Res. 2017, 56, 12644; https://doi.org/10.1021/acs.iecr.7b03462.Suche in Google Scholar

10. Mousa, M. A., Gado, H. S., Abdelfattah, M. M. G., Madi, A. E., Taha, M. H., Roshdy, O. E. Removal of uranium from crude phosphoric acid by precipitation technique. Arab J. Nucl. Sci. Appl. 2013, 46, 38.Suche in Google Scholar

11. Ali, H., Ali, M., Taha, M., Magied, A. A. Uranium extraction mechanism from analytical grade phosphoric acid using D2EHPA and synergistic D2EHPA-TOPO mixture. Int. J. Nucl. Energy Sci. Eng. 2012, 2, 57.Suche in Google Scholar

12. Taha, M. H. Iron scrubbing from D2EHPA and TOPO mixture during second cycle of uranium extraction from phosphoric acid using oxalic acid. Nucl. Sci. Sci. J. 2017, 6, 171; https://doi.org/10.21608/nssj.2017.30780.Suche in Google Scholar

13. Aly, M. M., Mousa, M. A., Taha, M. H., Kandil, K. M., El-Zoghby, A. A. Kinetics and thermodynamics of uranium adsorption from commercial di-hydrate phosphoric acid using D2EHPA-impregnated charcoal. Arab J. Nucl. Sci. Appl. 2013, 46, 29.Suche in Google Scholar

14. El-Maadawy, M. M. HDEHP-impregnated kaolinite for adsorption of uranium from dilute phosphoric acid. Radiochemistry. 2019, 61, 331; https://doi.org/10.1134/s1066362219030081.Suche in Google Scholar

15. Taha, M. H. Solid–liquid extraction of uranium from industrial phosphoric acid using macroporous cation exchange resins: MTC1600H, MTS9500, and MTS9570. Sep. Sci. Technol. 2020, 1, 1562; https://doi.org/10.1080/01496395.2020.1787446.Suche in Google Scholar

16. Elzoghby, A. A. Kinetic and equilibrium studies for U(VI) and Cd(II) sorption from commercial phosphoric acid using C100H resin. J. Radioanal. Nucl. Chem. 2021, 329, 899; https://doi.org/10.1007/s10967-021-07832-7.Suche in Google Scholar

17. Hussein, A. E. M., Morsy, A. M. A. Uranium recovery from wet-process phosphoric acid by a commercial ceramic product. Arab. J. Chem. 2017, 10, S361; https://doi.org/10.1016/j.arabjc.2012.09.007.Suche in Google Scholar

18. Ali, M. M., Abedelmaksoud, S. A., Taha, M. H., El Naggar, A. M. A., Morshedy, A. S., Elzoghbi, A. A. Uranium separation from phosphoric acid using metallic carbonaceous structures as efficient adsorbents: an experimental and kinetic study. Radiochemistry 2020, 62, 204; https://doi.org/10.1134/s1066362220020083.Suche in Google Scholar

19. Abdel-Magied, A. F. Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study. Radiochim. Acta 2017, 105, 813; https://doi.org/10.1515/ract-2017-0001.Suche in Google Scholar

20. Taha, M. H., El-Maadawy, M. M., Hussein, A. E. M., Youssef, W. M. Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J. Radioanal. Nucl. Chem. 2018, 317, 685; https://doi.org/10.1007/s10967-018-5951-9.Suche in Google Scholar

21. Morsy, A., Taha, M. H., Saeed, M., Waseem, A., Riaz, M. A., Elmaadawy, M. M. Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent. Nucl. Sci. Tech. 2019, 30, 1; https://doi.org/10.1007/s41365-019-0686-z.Suche in Google Scholar

22. Meawad, A., Ibrahim, S. Novel bifunctional dispersing agents from waste PET packaging materials and interaction with cement. Waste Manage. 2019, 85, 563; https://doi.org/10.1016/j.wasman.2019.01.028.Suche in Google Scholar PubMed

23. Evode, N., Qamar, S. A., Bilal, M., Barceló, D., Iqbal, H. M. N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142; https://doi.org/10.1016/j.cscee.2021.100142.Suche in Google Scholar

24. Ilyas, M., Ahmad, W., Khan, H. Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. Water Sci. Technol. 2021, 84, 609; https://doi.org/10.2166/wst.2021.252.Suche in Google Scholar PubMed

25. Farag, N. M., El-Sayed, G. O., Morsy, A. M. A., Taha, M. H., Yousif, M. M. Modification of Davies & Gray method for uranium determination in phosphoric acid solutions. Int. J. Adv. Res. 2015, 12, 323.Suche in Google Scholar

26. Lu, Z., Hou, D., Hanif, A., Hao, W., Sun, G., Li, Z. Comparative evaluation on the dispersion and stability of graphene oxide in water and cement pore solution by incorporating silica fume. Cem. Concr. Compos. 2018, 94, 33; https://doi.org/10.1016/j.cemconcomp.2018.08.011.Suche in Google Scholar

27. Ibrahim, S., El Saied, H., Hasanin, M. Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J. King Saud Univ. – Sci. 2019, 31, 1095; https://doi.org/10.1016/j.jksus.2018.10.007.Suche in Google Scholar

28. Ibrahim, S., Sultan, M. Superhydrophobic coating polymer/silica nanocomposites: part I synthesis and characterization as eco-friendly coating. Silicon 2019, 12, 805; https://doi.org/10.1007/s12633-019-00172-y.Suche in Google Scholar

29. Ibrahim, S., Abdel Rehim, M., Turky, G. Dielectric study of polystyrene/polycaprolactone composites prepared by miniemulsion polymerization. J. Phys. Chem. Solids 2018, 119, 56; https://doi.org/10.1016/j.jpcs.2018.03.030.Suche in Google Scholar

30. Ibrahim, S., Elsayed, H., Hasanin, M. Biodegradable, antimicrobial and antioxidant biofilm for active packaging based on extracted gelatin and lignocelluloses biowastes. J. Polym. Environ. 2021, 29, 472; https://doi.org/10.1007/s10924-020-01893-7.Suche in Google Scholar

31. Ibrahim, W. M., Hassan, A. F., Azab, Y. A. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt. J. Basic Appl. Sci. 2019, 3, 241; https://doi.org/10.1016/j.ejbas.2016.07.005.Suche in Google Scholar

32. Younes, A. A., Masoud, A. M., Taha, M. H. Amino-functionalised cross-linked polyacrylamide for the adsorption of U(VI) ions from contaminated aqueous solutions. Int. J. Environ. Anal. Chem. 2021; https://doi.org/10.1080/03067319.2021.2003348.Suche in Google Scholar

33. Hassanein, T. F., Masoud, A. M., Mohamed, W. S., Taha, M. H., Guibal, E. Synthesis of polyamide 6/nano-hydroxyapatite hybrid (PA6/n-HAp) for the sorption of rare earth elements and uranium. J. Environ. Chem. Eng. 2021, 9, 104731; https://doi.org/10.1016/j.jece.2020.104731.Suche in Google Scholar

34. Taha, M. H. Sorption of U(VI), Mn (II), Cu(II), Zn(II), and Cd(II) from multi-component phosphoric acid solutions using MARATHON C resin. Environ. Sci. Pollut. Res. 2021, 28, 12475; https://doi.org/10.1007/s11356-020-11256-3.Suche in Google Scholar PubMed

35. Largitte, L., Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by activated carbon. Chem. Eng. Res. Des. 2016, 109, 495; https://doi.org/10.1016/j.cherd.2016.02.006.Suche in Google Scholar

36. Wu, F. C., Tseng, R. L., Juang, R. S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1; https://doi.org/10.1016/j.cej.2009.04.042.Suche in Google Scholar

37. Kang, H. J., Kim, J. H. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. Biotechnol. Bioprocess Eng. 2019, 24, 513; https://doi.org/10.1007/s12257-019-0001-1.Suche in Google Scholar

38. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., Ok, Y. S. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 2014, 99, 19; https://doi.org/10.1016/j.chemosphere.2013.10.071.Suche in Google Scholar PubMed

39. Al-Ghouti, M. A., Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 2020, 393, 122383; https://doi.org/10.1016/j.jhazmat.2020.122383.Suche in Google Scholar PubMed

40. Kim, Y. S., Kim, J. H. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 2019, 130, 104; https://doi.org/10.1016/j.jct.2018.10.005.Suche in Google Scholar

41. El-Bayaa, A. A., Badawy, N. A., Gamal, A. M., Zidan, I. H., Mowafy, A. R. Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand. J. Hazard. Mater. 2011, 190, 324; https://doi.org/10.1016/j.jhazmat.2011.03.037.Suche in Google Scholar PubMed

42. Saha, P., Chowdhury, S. Insight into adsorption thermodynamics. In Thermodynamics; IntechOpen Limited: London, 16, 2011; pp. 349–364.10.5772/13474Suche in Google Scholar

43. Masoud, A. M. Sorption behavior of uranium from Sulfate media using purolite A400 as a strong base anion exchange resin. Int. J. Environ. Anal. Chem. 2020, 102, 3124; https://doi.org/10.1080/03067319.2020.1763974.Suche in Google Scholar

44. Zhong, X., Liang, W., Lu, Z., Hu, B. Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl. Surf. Sci. 2020, 504, 144403; https://doi.org/10.1016/j.apsusc.2019.144403.Suche in Google Scholar

45. Wang, C., Huang, D., He, F., Jin, T., Huang, B., Xu, J., Qian, Y. Efficient removal of uranium(VI) from aqueous solutions by triethylenetetramine-functionalized single-walled carbon nanohorns. ACS Omega 2020, 5, 27789; https://doi.org/10.1021/acsomega.0c02715.Suche in Google Scholar PubMed PubMed Central

46. Beltrami, D., Mercier-Bion, F., Cote, G., Mokhtari, H., Courtaud, B., Simoni, E., Chagnes, A. Investigation of the speciation of uranium(VI) in concentrated phosphoric acid and in synergistic extraction systems by time-resolved laser-induced fluorescence spectroscopy (TRLFS). J. Mol. Liq. 2014, 190, 42; https://doi.org/10.1016/j.molliq.2013.10.013.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0165).


Received: 2023-05-03
Accepted: 2023-11-20
Published Online: 2023-12-01
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0165/html
Button zum nach oben scrollen