Startseite On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples

  • Hemn Salh ORCID logo EMAIL logo , Shalaw Zrar Sedeeq ORCID logo , Serpil Aközcan Pehlivanoğlu ORCID logo , Ikbal M. Albarzinji ORCID logo und Fatih Külahcı ORCID logo
Veröffentlicht/Copyright: 7. Juni 2024

Abstract

In this study, the activity concentration of artificial and natural radionuclides such as 137Cs, 40K, 226Ra, and 232Th was measured in the soil under the roots; leaves; and fruits of six different fruit trees namely mulberry, fig, apricot, olive, black and white grapes in Koya district, Erbil province, Iraq. For this purpose, a high-resolution gamma spectroscopy consisting of a high-purity germanium (HPGe) detector was used. In addition, the associated radiological risks from soil and fruits were assessed by calculating several radiological indices such as radium equivalent (Raeq.s), absorbed dose (Ds), indoor (AEDEs indoor ) and outdoor annual effective doses (AEDEs outdoor ), internal and external hazard indices, gamma index and the excess lifetime cancer risk (ELRCs). The results show that consuming these fruits is radiologically safe because they can cause an annual effective dose of about 61.72 μSv y−1 and excess lifetime cancer risk of 0.06 × 10−3 Sv y−1. On the other hand, transfer factors of radionuclides from soil to leaves; and from soil to fruits were studied. The transfer factor analysis revealed that among the studied fruits and radionuclides, apricot and mulberry exhibited the highest transfer factors for 40K, with values of 1.85 and 1.87, respectively.


Corresponding author: Hemn Salh, Department of Physics, Faculty of Science and Health, Koya University, Koya KOY45, Iraq, E-mail:

Acknowledgments

The activity concentrations were measured in the Nuclear Physics laboratory, DPHY, FSCH, Koya University, the authors would like to thank Koya University and the Department of Physics for providing a research environment.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Al-Masri, M. S.; Amin, Y.; Khalily, H.; Al-Masri, W.; Al-Khateeb, Y. Assessment of Natural Radionuclide Transfer Factors and Partition Coefficients in Some Syrian Soils. J. Environ. Radioact. 2021, 229–230, 106538. https://doi.org/10.1016/j.jenvrad.2021.106538Suche in Google Scholar PubMed

2. Ilori, A. O.; Chetty, N. Soil-to-Crop Transfer of Natural Radionuclides in Farm Soil of South Africa. Environ. Monit. Assess. 2020, 192 (12), 775. https://10.1007/s10661-020-08756-710.1007/s10661-020-08756-7Suche in Google Scholar PubMed

3. Sharma, D. A.; Keesari, T.; Rishi, M.; Thakur, N.; Pant, D.; Mohokar, H. V.; Jaryal, A.; Kamble, S. N. Sinha UK Radiological and Hydrological Implications of Dissolved Radon in Alluvial Aquifers of Western India. J. Radioanal. Nucl. Chem. 2020, 323 (3), 1257–1267. https://doi.org/10.1007/s10967-019-06619-1Suche in Google Scholar

4. Mostafa, M. Y. A.; Kadhim, N. F.; Ammer, H.; Baqir, Y. The Plant Transfer Factor of Natural Radionuclides and the Soil Radiation Hazard of Some Crops. Environ. Monit. Assess. 2021, 193 (6), 320. https://doi.org/10.1007/s10661-021-09061-7.10.1007/s10661-021-09061-7Suche in Google Scholar PubMed

5. Bilgici Cengiz, G. Transfer Factors of 226Ra, 232Th and 40K from Soil to Pasture-Grass in the Northeastern of Turkey. J. Radioanal. Nucl. Chem. 2019, 319 (1), 83–89. https://10.1007/s10967-018-6337-810.1007/s10967-018-6337-8Suche in Google Scholar

6. Al-Shboul, K. F.; Al-Ajlony, A.-M. B. A. Al-Malkawi GH Modeling and Experimental Assessment of Naturally Occurring Radionuclides’ Transfer Factors of Orange Fruits. J. Environ. Radioact. 2023, 262, 107149. https://doi.org/10.1016/j.jenvrad.2023.107149Suche in Google Scholar PubMed

7. Duong, V. H.; Nguyen, T. D.; Kocsis, E.; Csordas, A.; Hegedus, M.; Kovacs, T. Transfer of Radionuclides from Soil to Acacia auriculiformis Trees in High Radioactive Background Areas in North Vietnam. J. Environ. Radioact. 2021, 229–230, 106530. https://doi.org/10.1016/j.jenvrad.2021.106530Suche in Google Scholar PubMed

8. Azeez, H. H.; Mansour, H. H.; Ahmad, S. T. Transfer of Natural Radioactive Nuclides from Soil to Plant Crops. Appl. Radiat. Isotope. 2019, 147, 152–158. https://doi.org/10.1016/j.apradiso.2019.03.010Suche in Google Scholar PubMed

9. Şahin Bal, S.; Kurşat, M.; Kuluöztürk, M. F.; Karatepe Çelik, Ş.; Yılmaz, E. Soil to Plant Transfer of 226Ra, 232Th and 137Cs to Some Medicinal and Aromatic Plants Growing in Bitlis (Turkey). J. Environ. Radioact. 2023, 257, 107089. https://doi.org/10.1016/j.jenvrad.2022.107089Suche in Google Scholar PubMed

10. Siraz, M. M. M.; Das, S. K.; Mondol, M. S.; Alam, M. S.; Al, M. J.; Rashid, M. B.; Khandaker, M. U.; Yeasmin, S. Evaluation of Transfer Factors of 226Ra, 232Th, and 40K Radionuclides from Soil to Grass and Mango in the Northern Region of Bangladesh. Environ. Monit. Assess. 2023, 195 (5), 579. https://10.1007/s10661-023-11223-810.1007/s10661-023-11223-8Suche in Google Scholar PubMed

11. Akhter, P.; Rahman, K.; Orfi, S. D.; Ahmad, N. Radiological Impact of Dietary Intakes of Naturally Occurring Radionuclides on Pakistani Adults. Food Chem. Toxicol. 2007, 45 (2), 272–277. https://doi.org/10.1016/j.fct.2006.08.006Suche in Google Scholar PubMed

12. Anyimah-Ackah, E.; Ofosu, I. W.; Lutterodt, H. E.; Darko, G. Kpeglo Do Excess Lifetime Cancer Risk and Committed Effective Dose Associated with Dietary Exposure to Radioactivity of Natural Origin from Mining Areas. J. Consum. Protect. Food Safety 2021, 16 (3), 219–225. https://doi.org/10.1007/s00003-021-01332-2Suche in Google Scholar

13. Kadhim, N. F., Khalaf, H. N. B., Hassan, H. A., Mostafa, M. Y. A Determining the Natural Radioactivity of Spices Widely Used in Iraq. Int. J. Environ. Anal. Chem. 2021, 103(13), 1–12. https://10.1080/03067319.2021.1901897.10.1080/03067319.2021.1901897Suche in Google Scholar

14. Smail, J. M.; Ahmad, S. T.; Mansour, H. H. Estimation of the Natural Radioactivity Levels in the Soil Along the Little Zab River, Kurdistan Region in Iraq. J. Radioanal. Nucl. Chem. 2022, 331 (1), 119–128. https://10.1007/s10967-021-08064-510.1007/s10967-021-08064-5Suche in Google Scholar

15. Ahmad, S. T.; Almuhsin, I. A.; Hamad, W. M. Radon Activity Concentrations in Jale and Mersaid Warm Water Springs in Koya District, Kurdistan Region-Iraq. J. Radioanal. Nucl. Chem. 2021, 328 (3), 753–768. https://10.1007/s10967-021-07725-910.1007/s10967-021-07725-9Suche in Google Scholar

16. IAEA. IAEA Director General Meets Iraq PM to Discuss Intensified Support for Nuclear Energy, Cancer Care and Radioactive Waste Clean-Up [online], 2024. https://www.iaea.org/newscenter/news/iaea-director-general-meets-iraq-pm-to-discuss-intensified-support-for-nuclear-energy-cancer-care-and-radioactive-waste-clean-up (accessed 2024-04-01).Suche in Google Scholar

17. Küçükönder, E.; Gümbür, S.; Söğüt, Ö.; Doğru, M. Radioactivity Amounts, Annual Effective Dose Rate, and Lifetime Cancer Risk Estimation of Some Vegetable and Fruit Samples Cultivated in Kahramanmaraş, Turkey. Environ. Monit. Assess. 2023, 195 (4), 475. https://doi.org/10.1007/s10661-023-11098-9Suche in Google Scholar PubMed

18. Sultan, D. A. O.; Turhan, Ş.; Kurnaz, A.; Hançerlioğulları, A.; Kamberli, A. K.; Emeksizoğlu, B. Investigation of Natural Radionuclide and Essential Metal Contents of Ancient Wheat Einkorn (Triticum monococcum L.) Grown in Turkey. Radiochimica Acta 2020, 108 (12), 999-1007. https://doi.org/10.1515/ract-2020-0017Suche in Google Scholar

19. Samad, A. I.; Ahmed, A. H.; Ahmad, S. T. Radiological Health Assessment of Infant Milk in Erbil Governorate, Iraq. Environ. Monit. Assess. 2023, 195 (3), 419. https://doi.org/10.1007/s10661-023-11010-5.Suche in Google Scholar PubMed

20. Sahoo, S. K.; Katlamudi, M.; Shaji, J. P.; Murali Krishna, K. S.; Udaya Lakshmi, G. Influence of Meteorological Parameters on the Soil Radon (Rn222) Emanation in Kutch, Gujarat, India. Environ. Monit. Assess. 2018, 190 (3), 111. https://10.1007/s10661-017-6434-010.1007/s10661-017-6434-0Suche in Google Scholar PubMed

21. Salih, N. F.; Hussein, Z. A.; Sedeeq, S. Z. J. R. P. Environment Environmental Radioactivity Levels in Agricultural Soil and Wheat Grains Collected from Wheat-Farming Lands of Koya District, Kurdistan Region-Iraq. Radiat. Protect. Environ. 2019, 42 (4), 128.10.4103/rpe.RPE_37_19Suche in Google Scholar

22. Abdulla, H. M.; Ahmed, A. H. Assessment of Radiological Hazards in Cooking Liquid Oil, Used in Kurdistan Region-Iraq. Zanco J. Pure. Appl. Sci. 2022, 34 (1), 1–7.10.21271/ZJPAS.34.1.1Suche in Google Scholar

23. Aközcan, S.; Külahcı, F.; Mercan, Y. A Suggestion to Radiological Hazards Characterization of 226Ra, 232Th, 40K and 137Cs: Spatial Distribution Modelling. J. Hazard. Mater. 2018, 353, 476–489. https://doi.org/10.1016/j.jhazmat.2018.04.042Suche in Google Scholar PubMed

24. Al-Hamarneh, I. F.; Awadallah, M. I. Soil Radioactivity Levels and Radiation Hazard Assessment in the Highlands of Northern Jordan. Radiat. Meas. 2009, 44 (1), 102–110. https://doi.org/10.1016/j.radmeas.2008.11.005Suche in Google Scholar

25. Beretka, J.; Mathew, P. J. Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 1985, 48 (1), 87–95. https://doi.org/10.1097/00004032-198501000-00007Suche in Google Scholar PubMed

26. UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects and Risks of Ion-Izing Radiation; United Nations: New York, 2000.Suche in Google Scholar

27. Aközcan, S. Natural and Artificial Radioactivity Levels and Hazards of Soils in the Kücük Menderes Basin, Turkey. Environ. Earth Sci. 2014, 71 (10), 4611–4614. https://doi.org/10.1007/s12665-013-2861-6Suche in Google Scholar

28. Bilici, A.; Kocak, I.; Bilici, S.; Kamislioglu, M.; Aközcan, S.; Buyuk, B.; Özden, S. Determination of Radionuclides Concentrations in Surface Soil Samples in the District of Bandirma, Balıkesir. Environ. Forensic. 2023, 1–14. https://doi.org/10.1080/15275922.2023.2218662Suche in Google Scholar

29. Salh, H.; Külahcı, F.; Aközcan, S. A Mobile Simulation and ARIMA Modeling for Prediction of Air Radiation Dose Rates. J. Radioanal. Nucl. Chem. 2021, 328 (3), 889–901. https://doi.org/10.1007/s10967-021-07726-8Suche in Google Scholar

30. WHO Guidelines for Drinking Water Quality and Other Screening Levels of Various Categories of Foods, 6th ed.; World Health Organization: Geneva, Switzerland, 2008.Suche in Google Scholar

31. Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide Concentrations in Soil and Lifetime Cancer Risk Due to Gamma Radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100 (1), 49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012Suche in Google Scholar PubMed

32. Fasanmi, P. O., Olukotun, S. F., Onumejor, C. A., Tchokossa, P., Adegbehingbe, O. Radiological Assessment of Grains, Vegetables, Fruits and Tuber Crops Cultivated in Okemesi Township, Ekiti State, Nigeria. Euroasia J. Math. Eng. Nat. Med. Sci. 2021, 8(15), 87–96. https://doi.org/10.38065/euroasiaorg.554.Suche in Google Scholar

33. Shabib, M.; El-Taher, A.; Mohamed, N. M. A.; Madkour, H. A.; Ashry, H. A. Assessment of Radioactivity Concentration of Natural Radionuclides and Radiological Hazard Indices in Coral Reefs in the Egyptian Red Sea. J. Radioanal. Nucl. Chem. 2021, 329 (3), 1199–1212. https://doi.org/10.1007/s10967-021-07896-5Suche in Google Scholar

34. Kant, K.; Gupta, R.; Kumari, R.; Gupta, N.; Garg, M. Natural Radioactivity in Indian Vegetation Samples. J. Int. J. Radiat. Res. 2015, 13 (2), 143–150. https://10.7508/ijrr.2015.02.004Suche in Google Scholar

35. Abdel-Rahman, M. A. E.; El-Mongy, S. A. Analysis of Radioactivity Levels and Hazard Assessment of Black Sand Samples From Rashid Area, Egypt. Nucl. Eng. Technol. 2017, 49 (8), 1752–1757. https://doi.org/10.1016/j.net.2017.07.020Suche in Google Scholar

36. Aydın, M. F.; Söğüt, Ö.; Kara, A. Radiological Health Risks Assessment of Vegetable and Fruit Samples Taken from the Provincial Borders of Adıyaman in the South-Eastern Anatolia Region, in Turkey. J. Radiat. Res. Appl. Sci. 2022, 15 (4), 100491. https://doi.org/10.1016/j.jrras.2022.100491Suche in Google Scholar

37. Turhan, Ş. The Natural Radioactivity in Drinking Water by Gross Alpha and Beta Measurements and Radiological Quality Assessment. Radiochimica Acta 2020, 108 (6), 491–498. https://doi.org/10.1515/ract-2019-3175Suche in Google Scholar

38. Çam Kaynar, S. Annual Effective Dose Values from 137Cs Activity Concentrations in Soils of Manisa, Turkey. Nucl Sci Tech. 2018, 29, 1–7.10.1007/s41365-018-0440-ySuche in Google Scholar

39. Özden, S., Aközcan, S., Günay, O. 137Cs in Soils From İstanbul (Turkey) Sampled 35 Years After Chernobyl. Environ. Forensics. 2023, 25(3), 1–7; https://doi.org/10.1080/15275922.2023.2218299.Suche in Google Scholar

40. Ahmed, R. S. The Concentration of Radioactive Materials in Iraqi Soils, Water and Plants: A Review. J. Radiat. Res. Appl. Sci. 2022, 15 (1), 245–256. https://doi.org/10.1016/j.jrras.2022.03.012Suche in Google Scholar

41. Duong Van, H.; Nguyen, T. D.; Peka, A.; Hegedus, M.; Csordas, A.; Kovacs, T. Study of Soil to Plant Transfer Factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese Crops. J. Environ. Radioact. 2020, 223–224, 106416. https://doi.org/10.1016/j.jenvrad.2020.106416Suche in Google Scholar PubMed

42. Razvanchy, H. A.; Fayyadh, M. A. The Distribution of Soil Mapping Units in Erbil Province at Kurdistan Region, Iraq Using Geo-Informatics Technique. AIP Conf. Proc. 2022, 2660, 020045. https://doi.org/10.1063/5.0109358Suche in Google Scholar

43. Nguyen, H. H.; Maneepong, S.; Suraninpong, P. Effects of Potassium, Calcium, and Magnesium Ratios in Soil on Their Uptake and Fruit Quality of Pummelo. J. Agri. Sci. 2017, 9 (12), 110–121.10.5539/jas.v9n12p110Suche in Google Scholar

44. Andric, V.; Gajic-Kvascev, M. The Radioactivity Parameters in the Food Chain - Legislation, Control and Critical Points. IOP Conf. Ser.: Earth Environ. Sci. 2021, 854, 012003. https://10.1088/1755-1315/854/1/01200310.1088/1755-1315/854/1/012003Suche in Google Scholar

45. Griffiths, H. J. 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP Publication 60. Radiology 1992, 182 (3), 692. https://doi.org/10.1148/radiology.182.3.692-aSuche in Google Scholar

46. Mikelić, I. L.; Barišić, D. Natural and Anthropogenic Radionuclides in Karstic Coastal Area (Kaštela Bay, Adriatic Sea, Croatia) Exposed to Anthropogenic Activities: Distribution, Sources, and Influencing Factors. Radiochimica Acta 2023, 111 (2), 147–157. https://doi.org/10.1515/ract-2022-0045Suche in Google Scholar

47. ICRP. Age-dependent Doses to Members of the Public from Intake of Radionuclides - Part 2 Ingestion Dose Coefficients. ICRP Publication 67. Ann. ICRP 1993, 23(3–4), 85–94.10.1016/0146-6453(93)90030-CSuche in Google Scholar

48. UNSCEAR. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 Report, Volume I: Report to the General Assembly, With Scientific Annexes A and B-Sources, 2010.Suche in Google Scholar

49. Hafsi, C.; Debez, A.; Abdelly, C. Potassium Deficiency in Plants: Effects and Signaling Cascades. Acta Physiologiae Plantarum 2014, 36 (5), 1055–1070. https://doi.org/10.1007/s11738-014-1491-2Suche in Google Scholar

50. Hegazi, A.; Salama, M. A.; Kassab, M. F.; Abdou, N. Y. Natural Radioactivity Levels in Some Vegetable Crops under Greenhouse Conditions. Appl. Radiat. Isotope. 2023, 197, 110833. https://doi.org/10.1016/j.apradiso.2023.110833Suche in Google Scholar PubMed

51. Nursapina, N. A.; Shynybek, B. A.; Matveyeva, I. V.; Nazarkulova, S. N.; Štrok, M.; Benedik, L.; Ponomarenko, O. I. Effect of Mineral Fertilisers Application on the Transfer of Natural Radionuclides from Soil to Radish (Raphanus sativus L.). J. Environ. Radioact. 2022, 247, 106863. https://doi.org/10.1016/j.jenvrad.2022.106863Suche in Google Scholar PubMed

52. Najam, L. A.; Ahmed, I.; Alkhayat, R. B.; Wais, T. Y.. Transfer Factors of 226Ra, 232Th and 40K from Fertilised Soil to Different Types of Field Crops in Tikrit City, Iraq. Int. J. Nucl. Energy Sci. Technol. 2022, 16 (1), 31–43. https://doi.org/10.1504/ijnest.2022.128993Suche in Google Scholar

53. Alsabbagh, A. H.; Abuqudaira, T. M. Phytoremediation of Jordanian Uranium-Rich Soil Using Sunflower. Water Air Soil Pollut. 2017, 228 (6), 219. https://doi.org/10.1007/s11270-017-3396-3Suche in Google Scholar

54. Yan, L.; Le, Q. V.; Sonne, C.; Yang, Y.; Yang, H.; Gu, H.; Ma, N. L.; Lam, S. S.; Peng, W. Phytoremediation of Radionuclides in Soil, Sediments and Water. J. Hazard. Mater. 2021, 407, 124771. https://doi.org/10.1016/j.jhazmat.2020.124771Suche in Google Scholar PubMed

55. Al-Masri, M. S.; Al-Akel, B.; Nashawani, A.; Amin, Y.; Khalifa, K. H.; Al-Ain, F. Transfer of 40K, 238U, 210Pb, and 210Po from Soil to Plant in Various Locations in South of Syria. J. Environ. Radioact. 2008, 99 (2), 322–331. https://doi.org/10.1016/j.jenvrad.2007.08.021Suche in Google Scholar PubMed

56. Velasco, H.; Anjos, R. M. A Review of 137Cs and 40K Soil-to-Plant Transfer Factors in Tropical Plants. J. Environ. Radioact. 2021, 235–236, 106650. https://doi.org/10.1016/j.jenvrad.2021.106650Suche in Google Scholar PubMed

Received: 2023-09-13
Accepted: 2024-05-23
Published Online: 2024-06-07
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0233/html
Button zum nach oben scrollen