Startseite Naturwissenschaften Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators

  • Nancy Moreno-Gil , Verónica E. Badillo-Almaraz EMAIL logo , Guadalupe C. Velazquez-Peña , Miguel A. Camacho-López und Keila Issac-Olivé
Veröffentlicht/Copyright: 31. Mai 2024

Abstract

In order to contribute to the sufficient supply of clinical 99mTc(VII), the sorption behavior of neutron-produced 99Mo(VI) was investigated on synthetized single and binary Ti and Zr xerogels treated at different temperatures, under normal operating conditions. Materials were prepared by the sol–gel method and characterized by several techniques. Sorption batch systems were performed using 99Mo radiotracer to determine the metallic affinity as a function of pH, and a methodology was developed in order to obtain the maximum capacities by surface saturation, where the Ti-388, TiZr-388 (3:1) and Zr-388 samples showed the most noteworthy sorption behaviors (33.1 ± 0.34 mg/g at pH ∼ 6.0, 31.7 ± 0.27 mg/g at pH ∼ 6.5, and 23.5 ± 0.61 mg/g at pH ∼ 6.8, respectively). The molybdenum-99 sorption behavior was also studied by fitting to the Freundlich and Langmuir models, and all xerogels could be described as heterogeneous materials with favorable 99Mo sorption properties. Finally, preliminary studies of clinical-scale 99Mo/99mTc generators were performed, the results revealed the next maximum 99mTc elution yield order Ti-388 (89.6 %) > TiZr-388 (3:1) (86.7 %) > Zr-388 (77.7 %).


Corresponding author: Verónica E. Badillo-Almaraz, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N (km 36.5), 52750 La Marquesa, Ocoyoacac, Estado de México, Mexico, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Dash, A.; Chakravarty, R. Pivotal Role of Separation Chemistry in the Development of Radionuclide Generators to Meet Clinical Demands. RSC Adv. 2014, 4, 42779; https://doi.org/10.1039/c4ra07218a.Suche in Google Scholar

2. Mettler, F. A.; Guiberteau, M. J. Radioactivity, Radionuclides, and Radiopharmaceuticals. In Essentials of Nuclear Medicine and Molecular Imaging; Elsevier, 2019.10.1016/B978-0-323-48319-3.00001-8Suche in Google Scholar

3. Nairne, J., Iveson, P. B., Meijer, A. Imaging in Drug Development. Prog. Med. Chem. 2015, 54, 231–280; https://doi.org/10.1016/bs.pmch.2014.10.002.Suche in Google Scholar PubMed

4. Khalil, M. M. Basic Sciences of Nuclear Medicine; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 1–423.Suche in Google Scholar

5. IAEA Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m; IAEA: Vienna, 2013; pp. 1–75.Suche in Google Scholar

6. Naafs, M. A. The Global Impact of the Mo-99 Shortage. Biomed. J. Sci. Tech. Res. 2018, 4, 1; https://doi.org/10.26717/bjstr.2018.04.001114.Suche in Google Scholar

7. Dash, A.; Knapp, F. F.; Pillai, M. R. A. 99Mo/99mTc Separation: An Assessment of Technology Options. Nucl. Med. Biol. 2013, 40, 167; https://doi.org/10.1016/j.nucmedbio.2012.10.005.Suche in Google Scholar PubMed

8. Nawar, M. F.; El-Daoushy, A. F.; Ashry, A.; Türler, A. Developing a Chromatographic 99mTc Generator Based on Mesoporous Alumina for Industrial Radiotracer Applications: A Potential New Generation Sorbent for Using Low-Specific-Activity 99Mo. Molecules 2022, 27, 5667; https://doi.org/10.3390/molecules27175667.Suche in Google Scholar PubMed PubMed Central

9. Hasan, S.; Prelas, M. A. Molybdenum-99 Production Pathways and the Sorbents for 99Mo/99mTc Generator Systems Using (N, γ) 99Mo: a Review. SN Appl. Sci. 2020, 2, 1782; https://doi.org/10.1007/s42452-020-03524-1.Suche in Google Scholar

10. Chen, Y. C.; Lu, C. Kinetics, Thermodynamics and Regeneration of Molybdenum Adsorption in Aqueous Solutions with NaOCl-Oxidized Multiwalled Carbon Nanotubes. J. Ind. Eng. Chem. 2014, 20, 2521; https://doi.org/10.1016/j.jiec.2013.10.035.Suche in Google Scholar

11. Aydia, M. I.; Hiekal, A. S.; El-Azony, K. M.; Mohamed, T. Y.; Shahin, I. M. Preparation and Characterization of Poly Nano-Cerium Chloride for 99Mo Production Based on Neutron Activation Reactions. Appl. Radiat. Isot. 2020, 163, 109211; https://doi.org/10.1016/j.apradiso.2020.109211.Suche in Google Scholar PubMed

12. Orrego, P.; Hernández, J.; Reyes, A. Uranium and Molybdenum Recovery from Copper Leaching Solutions Using Ion Exchange. Hydrometallurgy 2019, 184, 116; https://doi.org/10.1016/j.hydromet.2018.12.021.Suche in Google Scholar

13. Singh Jassal, P.; Kaur, D.; Prasad, R.; Singh, J. Green Synthesis of Titanium Dioxide Nanoparticles: Development and Applications. J. Agric. Food Res. 2022, 10, 100361; https://doi.org/10.1016/j.jafr.2022.100361.Suche in Google Scholar

14. Keiteb, A. S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis. J. Nanomater. 2016, 2016, 1; https://doi.org/10.1155/2016/1913609.Suche in Google Scholar

15. Mostafa, M.; Saber, H. M.; El-Sadek, A. A.; Nassar, M. Y. Preparation and Performance of 99 Mo/99m Tc Chromatographic Column Generator Based on Zirconium Molybdosilicate. Radiochim. Acta 2016, 104, 257; https://doi.org/10.1515/ract-2015-2488.Suche in Google Scholar

16. Chattopadhyay, S.; Barua, L.; Das, S. S.; De, A.; Kumar, U.; Mitra, A.; Mallick, T.; Madhusmita, N. M. A.; Sinha, S.; Sarkar, B. R.; Ganguly, S.; De, K.; Das, M. K.; Rajan, M. G. R. Pharmaceutical Grade Sodium [99mTc] Pertechnetate from Low Specific Activity 99Mo Using an Automated 99Mo/99mTc-TCM-Autosolex Generator. J. Radioanal. Nucl. Chem. 2014, 302, 781; https://doi.org/10.1007/s10967-014-3211-1.Suche in Google Scholar

17. Ray, S. S.; Gusain, R.; Kumar, N. Adsorption in the Context of Water Purification. In Carbon Nanomaterial-Based Adsorbents for Water Purification; Elsevier, 2020.10.1016/B978-0-12-821959-1.00004-0Suche in Google Scholar

18. Marlina, M.; Lestari, E.; Abidin, A.; Hambali, H.; Saptiama, I.; Febriana, S.; Kadarisman, K.; Awaludin, R.; Tanase, M.; Nishikata, K.; Tsuchiya, K. Molybdenum-99 (99Mo) Adsorption Profile of Zirconia-Based Materials for 99Mo/99mTc Generator Application. At. Indones. 2020, 46, 91; https://doi.org/10.17146/aij.2020.914.Suche in Google Scholar

19. Chakravarty, R.; Shukla, R.; Gandhi, S.; Ram, R.; Dash, A.; Venkatesh, M.; Tyagi, A. K. Polymer Embedded Nanocrystalline Titania Sorbent for 99Mo-99mTc Generator. J. Nanosci. Nanotechnol. 2008, 8, 4447; https://doi.org/10.1166/jnn.2008.280.Suche in Google Scholar PubMed

20. Moreno-Gil, N.; Badillo-Almaraz, V. E.; Pérez-Hernández, R.; López-Reyes, C.; Issac-Olivé, K. Comparison of the Sorption Behavior of 99Mo by Ti-Si-Ti-Si-Xerogels and Commercial Sorbents. J. Radioanal. Nucl. Chem. 2021, 328, 679; https://doi.org/10.1007/s10967-021-07663-6.Suche in Google Scholar

21. Lim, H. S., Ahmad, A., Hamzah, H. Synthesis of Zirconium Oxide Nanoparticle by Sol-Gel Technique. AIP Conf. Proc. 2013, 1571, 812–816; https://doi.org/10.1063/1.4858755.Suche in Google Scholar

22. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603; https://doi.org/10.1351/pac198557040603.Suche in Google Scholar

23. Mountjoy, G.; Pickup, D. M.; Anderson, R.; Wallidge, G. W.; Holland, M. A.; Newport, R. J.; Smith, M. E. Changes in the Zr Environment in Zirconia–Silica Xerogels with Composition and Heat Treatment as Revealed by Zr K-Edge XANES and EXAFS. Phys. Chem. Chem. Phys. 2000, 2, 2455; https://doi.org/10.1039/a910300g.Suche in Google Scholar

24. Amin, M.; El-Amir, M. A.; Ramadan, H. E.; El-Said, H. 99Mo/99mTc Generators Based on Aluminum Molybdate Gel Matrix Prepared by Nano Method. J. Radioanal. Nucl. Chem. 2018, 318, 915; https://doi.org/10.1007/s10967-018-6141-5.Suche in Google Scholar

25. Bagheri, S.; Mohd Hir, Z. A.; Yousefi, A. T.; Abdul Hamid, S. B. Progress on Mesoporous Titanium Dioxide: Synthesis, Modification and Applications. Microporous Mesoporous Mater. 2015, 218, 206; https://doi.org/10.1016/j.micromeso.2015.05.028.Suche in Google Scholar

26. Chakravarty, R.; Bahadur, J.; Lohar, S.; Sarma, H. D.; Sen, D.; Mishra, R.; Chakraborty, S.; Dash, A. Solid State Synthesis of Mesoporous Alumina: A Viable Strategy for Preparation of an Advanced Nanosorbent for 99Mo/99mTc Generator Technology. Microporous Mesoporous Mater. 2019, 287, 271; https://doi.org/10.1016/j.micromeso.2019.06.020.Suche in Google Scholar

27. Mostafa, M.; El-Sadek, A. A.; El-Said, H.; El-Amir, M. A. 99Mo/99mTc-113Sn/113mIn Dual Radioisotope Generator Based on 6-Tungstocerate(IV) Column Matrix. J. Nucl. Radiochem. Sci. 2009, 10, 1_1; https://doi.org/10.14494/jnrs.10.1_1.Suche in Google Scholar

28. El-Sweify, F. H.; Abdel Fattah, A.E.-D. A.; El-Sheikh, R.; Aly, S. M.; Ghamry, M. A. Studies on 99 Mo– 99m Tc Adsorption and Elution Behaviors Using the Inorganic Sorbent Ceric Tungstate and Conventional Organic Resins. Radiochim. Acta. 2017, 105, 561; https://doi.org/10.1515/ract-2016-2665.Suche in Google Scholar

29. Mostafa, M.; Saber, H. M.; El-Sadek, A. A.; Nassar, M. Y.; Amin, A. S. Sorption of Mo(VI) on Zirconium Molybdosilicate Gel and Potential Application as a 99Mo/99m Tc Generator. Radiochemistry 2016, 58, 409; https://doi.org/10.1134/s106636221604010x.Suche in Google Scholar

30. Nawar, M. F.; El-Daoushy, A. F.; Ashry, A.; Soliman, M. A.; Türler, A. Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles. Inorganics 2022, 10, 154; https://doi.org/10.3390/inorganics10100154.Suche in Google Scholar

31. Hiekal, A. S.; Aydia, M. I.; Essa, B. M.; Mahmoud, W. H.; El-Azony, K. M. Utilization of High Specific Activity 99 Mo for Assessing the Active Manganese Oxide as a Potential Material for 99 Mo/99m Tc Generator. Radiochim. Acta. 2023, 111, 545; https://doi.org/10.1515/ract-2023-0146.Suche in Google Scholar

32. Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, Binary and Multi-Component Adsorption of Some Anions and Heavy Metals on Environmentally Friendly Carpobrotus edulis Plant. Colloids Surf., B 2011, 82, 267; https://doi.org/10.1016/j.colsurfb.2010.09.013.Suche in Google Scholar PubMed

33. Wibowo, E.; Rokhmat, M.; Sutisna, K.; Abdullah, M. Reduction of Seawater Salinity by Natural Zeolite (Clinoptilolite): Adsorption Isotherms, Thermodynamics and Kinetics. Desalination 2017, 409, 146; https://doi.org/10.1016/j.desal.2017.01.026.Suche in Google Scholar

34. Cho, D.-W.; Jeon, B.-H.; Jeong, Y.; Nam, I.-H.; Choi, U.-K.; Kumar, R.; Song, H. Synthesis of Hydrous Zirconium Oxide-Impregnated Chitosan Beads and Their Application for Removal of Fluoride and Lead. Appl. Surf. Sci. 2016, 372, 13; https://doi.org/10.1016/j.apsusc.2016.03.068.Suche in Google Scholar

35. Zolle, I. Performance and Quality Control of the 99Mo/99mTc Generator. In Technetium-99m Pharmaceuticals; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007.10.1007/978-3-540-33990-8Suche in Google Scholar

36. Wang, X.; Gan, Y.; Guo, S.; Ma, X.; Xu, M.; Zhang, S. Advantages of Titanium Xerogel over Titanium Tetrachloride and Polytitanium Tetrachloride in Coagulation: A Mechanism Analysis. Water Res. 2018, 132, 350; https://doi.org/10.1016/j.watres.2017.12.081.Suche in Google Scholar PubMed

37. Puigdomenech, I. MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms)-Hydra Chemical Equilibrium Software, 2016. https://www.kth.se/che/medusa/.Suche in Google Scholar

38. El-Absy, M. A.; Amin, M.; El-Amir, M. A.; Mostafa, M.; Ramadan, H. E. Advanced Prospects for the Preparation of Zirconium [99Mo]Molybdate(VI) Gel from Diluted Reactants and 99m Tc Elution Performance. Radiochemistry 2016, 58, 415; https://doi.org/10.1134/s1066362216040111.Suche in Google Scholar

39. Asif, M.; Mushtaq, A. Evaluation of Highly Loaded Low Specific Activity 99Mo on Alumina Column as 99mTc Generator. J. Radioanal. Nucl. Chem. 2010, 284, 439; https://doi.org/10.1007/s10967-010-0490-z.Suche in Google Scholar

40. El-Said, H.; Ramadan, H.; Abbas, M.; El-Hashash, M. 99 Mo/99m Tc Radioisotope Generator Based on Adsorption of 99 Mo (VI) on Cerium (IV) Molybdate Column Matrix. Radiochim. Acta. 2018, 106, 991; https://doi.org/10.1515/ract-2018-0002.Suche in Google Scholar

41. Saptiama, I.; Lestari, E.; Sarmini, E.; Lubis, H.; Marlina, M.; Mutalib, A. Development of 99Mo/99mTc Generator System for Production of Medical Radionuclide 99mTc Using a Neutron-Activated 99Mo and Zirconium Based Material (ZBM) as its Adsorbent. Atom Indones. 2016, 42, 115; https://doi.org/10.17146/aij.2016.531.Suche in Google Scholar

42. Qazi, Q. M.; Mushtaq, A. Preparation and Evaluation of Hydrous Titanium Oxide as a High Affinity Adsorbent for Molybdenum ( 99 Mo) and its Potential for Use in 99m Tc Generators. Radiochim. Acta. 2011, 99, 231; https://doi.org/10.1524/ract.2011.1817.Suche in Google Scholar

43. Chakravarty, R.; Ram, R.; Dash, A.; Pillai, M. R. A. Preparation of Clinical-Scale 99Mo/99mTc Column Generator Using Neutron Activated Low Specific Activity 99Mo and Nanocrystalline γ-Al2O3 as Column Matrix. Nucl. Med. Biol. 2012, 39, 916; https://doi.org/10.1016/j.nucmedbio.2012.03.010.Suche in Google Scholar PubMed

44. Chakravarty, R.; Shukla, R.; Ram, R.; Tyagi, A. K.; Dash, A.; Venkatesh, M. Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications. Chromatographia 2010, 72, 875; https://doi.org/10.1365/s10337-010-1754-z.Suche in Google Scholar

45. Denkova, A. G.; Terpstra, B. E.; Steinbach, O. M.; Dam, J. ten; Wolterbeek, H. T. Adsorption of Molybdenum on Mesoporous Aluminum Oxides for Potential Application in Nuclear Medicine. Sep. Sci. Technol. 2013, 48, 1331; https://doi.org/10.1080/01496395.2012.736443.Suche in Google Scholar

46. Ma, C.; Vasileiadis, A.; Wolterbeek, H. T.; Denkova, A. G.; Serra Crespo, P. Adsorption of Molybdenum on Zr-Based MOFs for Potential Application in the 99Mo/99mTc Generator. Appl. Surf. Sci. 2022, 572, 151340; https://doi.org/10.1016/j.apsusc.2021.151340.Suche in Google Scholar

47. Chakravarty, R.; Ram, R.; Mishra, R.; Sen, D.; Mazumder, S.; Pillai, M. R. A.; Dash, A. Mesoporous Alumina (MA) Based Double Column Approach for Development of a Clinical Scale 99 Mo/99m Tc Generator Using (N,γ) 99 Mo: An Enticing Application of Nanomaterial. Ind. Eng. Chem. Res. 2013, 52, 11673; https://doi.org/10.1021/ie401042n.Suche in Google Scholar

48. Moret, J. L. T. M.; Alkemade, J.; Upcraft, T. M.; Oehlke, E.; Wolterbeek, H. T.; van Ommen, J. R.; Denkova, A. G. The Application of Atomic Layer Deposition in the Production of Sorbents for 99Mo/99mTc Generator. Appl. Radiat. Isot. 2020, 164, 109266; https://doi.org/10.1016/j.apradiso.2020.109266.Suche in Google Scholar PubMed

49. Coenen, H. H.; Gee, A. D.; Adam, M.; Antoni, G.; Cutler, C. S.; Fujibayashi, Y.; Jeong, J. M.; Mach, R. H.; Mindt, T. L.; Pike, V. W.; Windhorst, A. D. Consensus Nomenclature Rules for Radiopharmaceutical Chemistry — Setting the Record Straight. Nucl. Med. Biol. 2017, 55, v; https://doi.org/10.1016/j.nucmedbio.2017.09.004.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0223).


Received: 2023-08-28
Accepted: 2024-05-02
Published Online: 2024-05-31
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0223/html
Button zum nach oben scrollen