Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
-
Nancy Moreno-Gil
, Verónica E. Badillo-Almaraz, Guadalupe C. Velazquez-Peña
, Miguel A. Camacho-López and Keila Issac-Olivé
Abstract
In order to contribute to the sufficient supply of clinical 99mTc(VII), the sorption behavior of neutron-produced 99Mo(VI) was investigated on synthetized single and binary Ti and Zr xerogels treated at different temperatures, under normal operating conditions. Materials were prepared by the sol–gel method and characterized by several techniques. Sorption batch systems were performed using 99Mo radiotracer to determine the metallic affinity as a function of pH, and a methodology was developed in order to obtain the maximum capacities by surface saturation, where the Ti-388, TiZr-388 (3:1) and Zr-388 samples showed the most noteworthy sorption behaviors (33.1 ± 0.34 mg/g at pH ∼ 6.0, 31.7 ± 0.27 mg/g at pH ∼ 6.5, and 23.5 ± 0.61 mg/g at pH ∼ 6.8, respectively). The molybdenum-99 sorption behavior was also studied by fitting to the Freundlich and Langmuir models, and all xerogels could be described as heterogeneous materials with favorable 99Mo sorption properties. Finally, preliminary studies of clinical-scale 99Mo/99mTc generators were performed, the results revealed the next maximum 99mTc elution yield order Ti-388 (89.6 %) > TiZr-388 (3:1) (86.7 %) > Zr-388 (77.7 %).
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Dash, A.; Chakravarty, R. Pivotal Role of Separation Chemistry in the Development of Radionuclide Generators to Meet Clinical Demands. RSC Adv. 2014, 4, 42779; https://doi.org/10.1039/c4ra07218a.Search in Google Scholar
2. Mettler, F. A.; Guiberteau, M. J. Radioactivity, Radionuclides, and Radiopharmaceuticals. In Essentials of Nuclear Medicine and Molecular Imaging; Elsevier, 2019.10.1016/B978-0-323-48319-3.00001-8Search in Google Scholar
3. Nairne, J., Iveson, P. B., Meijer, A. Imaging in Drug Development. Prog. Med. Chem. 2015, 54, 231–280; https://doi.org/10.1016/bs.pmch.2014.10.002.Search in Google Scholar PubMed
4. Khalil, M. M. Basic Sciences of Nuclear Medicine; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 1–423.Search in Google Scholar
5. IAEA Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m; IAEA: Vienna, 2013; pp. 1–75.Search in Google Scholar
6. Naafs, M. A. The Global Impact of the Mo-99 Shortage. Biomed. J. Sci. Tech. Res. 2018, 4, 1; https://doi.org/10.26717/bjstr.2018.04.001114.Search in Google Scholar
7. Dash, A.; Knapp, F. F.; Pillai, M. R. A. 99Mo/99mTc Separation: An Assessment of Technology Options. Nucl. Med. Biol. 2013, 40, 167; https://doi.org/10.1016/j.nucmedbio.2012.10.005.Search in Google Scholar PubMed
8. Nawar, M. F.; El-Daoushy, A. F.; Ashry, A.; Türler, A. Developing a Chromatographic 99mTc Generator Based on Mesoporous Alumina for Industrial Radiotracer Applications: A Potential New Generation Sorbent for Using Low-Specific-Activity 99Mo. Molecules 2022, 27, 5667; https://doi.org/10.3390/molecules27175667.Search in Google Scholar PubMed PubMed Central
9. Hasan, S.; Prelas, M. A. Molybdenum-99 Production Pathways and the Sorbents for 99Mo/99mTc Generator Systems Using (N, γ) 99Mo: a Review. SN Appl. Sci. 2020, 2, 1782; https://doi.org/10.1007/s42452-020-03524-1.Search in Google Scholar
10. Chen, Y. C.; Lu, C. Kinetics, Thermodynamics and Regeneration of Molybdenum Adsorption in Aqueous Solutions with NaOCl-Oxidized Multiwalled Carbon Nanotubes. J. Ind. Eng. Chem. 2014, 20, 2521; https://doi.org/10.1016/j.jiec.2013.10.035.Search in Google Scholar
11. Aydia, M. I.; Hiekal, A. S.; El-Azony, K. M.; Mohamed, T. Y.; Shahin, I. M. Preparation and Characterization of Poly Nano-Cerium Chloride for 99Mo Production Based on Neutron Activation Reactions. Appl. Radiat. Isot. 2020, 163, 109211; https://doi.org/10.1016/j.apradiso.2020.109211.Search in Google Scholar PubMed
12. Orrego, P.; Hernández, J.; Reyes, A. Uranium and Molybdenum Recovery from Copper Leaching Solutions Using Ion Exchange. Hydrometallurgy 2019, 184, 116; https://doi.org/10.1016/j.hydromet.2018.12.021.Search in Google Scholar
13. Singh Jassal, P.; Kaur, D.; Prasad, R.; Singh, J. Green Synthesis of Titanium Dioxide Nanoparticles: Development and Applications. J. Agric. Food Res. 2022, 10, 100361; https://doi.org/10.1016/j.jafr.2022.100361.Search in Google Scholar
14. Keiteb, A. S.; Saion, E.; Zakaria, A.; Soltani, N. Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis. J. Nanomater. 2016, 2016, 1; https://doi.org/10.1155/2016/1913609.Search in Google Scholar
15. Mostafa, M.; Saber, H. M.; El-Sadek, A. A.; Nassar, M. Y. Preparation and Performance of 99 Mo/99m Tc Chromatographic Column Generator Based on Zirconium Molybdosilicate. Radiochim. Acta 2016, 104, 257; https://doi.org/10.1515/ract-2015-2488.Search in Google Scholar
16. Chattopadhyay, S.; Barua, L.; Das, S. S.; De, A.; Kumar, U.; Mitra, A.; Mallick, T.; Madhusmita, N. M. A.; Sinha, S.; Sarkar, B. R.; Ganguly, S.; De, K.; Das, M. K.; Rajan, M. G. R. Pharmaceutical Grade Sodium [99mTc] Pertechnetate from Low Specific Activity 99Mo Using an Automated 99Mo/99mTc-TCM-Autosolex Generator. J. Radioanal. Nucl. Chem. 2014, 302, 781; https://doi.org/10.1007/s10967-014-3211-1.Search in Google Scholar
17. Ray, S. S.; Gusain, R.; Kumar, N. Adsorption in the Context of Water Purification. In Carbon Nanomaterial-Based Adsorbents for Water Purification; Elsevier, 2020.10.1016/B978-0-12-821959-1.00004-0Search in Google Scholar
18. Marlina, M.; Lestari, E.; Abidin, A.; Hambali, H.; Saptiama, I.; Febriana, S.; Kadarisman, K.; Awaludin, R.; Tanase, M.; Nishikata, K.; Tsuchiya, K. Molybdenum-99 (99Mo) Adsorption Profile of Zirconia-Based Materials for 99Mo/99mTc Generator Application. At. Indones. 2020, 46, 91; https://doi.org/10.17146/aij.2020.914.Search in Google Scholar
19. Chakravarty, R.; Shukla, R.; Gandhi, S.; Ram, R.; Dash, A.; Venkatesh, M.; Tyagi, A. K. Polymer Embedded Nanocrystalline Titania Sorbent for 99Mo-99mTc Generator. J. Nanosci. Nanotechnol. 2008, 8, 4447; https://doi.org/10.1166/jnn.2008.280.Search in Google Scholar PubMed
20. Moreno-Gil, N.; Badillo-Almaraz, V. E.; Pérez-Hernández, R.; López-Reyes, C.; Issac-Olivé, K. Comparison of the Sorption Behavior of 99Mo by Ti-Si-Ti-Si-Xerogels and Commercial Sorbents. J. Radioanal. Nucl. Chem. 2021, 328, 679; https://doi.org/10.1007/s10967-021-07663-6.Search in Google Scholar
21. Lim, H. S., Ahmad, A., Hamzah, H. Synthesis of Zirconium Oxide Nanoparticle by Sol-Gel Technique. AIP Conf. Proc. 2013, 1571, 812–816; https://doi.org/10.1063/1.4858755.Search in Google Scholar
22. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603; https://doi.org/10.1351/pac198557040603.Search in Google Scholar
23. Mountjoy, G.; Pickup, D. M.; Anderson, R.; Wallidge, G. W.; Holland, M. A.; Newport, R. J.; Smith, M. E. Changes in the Zr Environment in Zirconia–Silica Xerogels with Composition and Heat Treatment as Revealed by Zr K-Edge XANES and EXAFS. Phys. Chem. Chem. Phys. 2000, 2, 2455; https://doi.org/10.1039/a910300g.Search in Google Scholar
24. Amin, M.; El-Amir, M. A.; Ramadan, H. E.; El-Said, H. 99Mo/99mTc Generators Based on Aluminum Molybdate Gel Matrix Prepared by Nano Method. J. Radioanal. Nucl. Chem. 2018, 318, 915; https://doi.org/10.1007/s10967-018-6141-5.Search in Google Scholar
25. Bagheri, S.; Mohd Hir, Z. A.; Yousefi, A. T.; Abdul Hamid, S. B. Progress on Mesoporous Titanium Dioxide: Synthesis, Modification and Applications. Microporous Mesoporous Mater. 2015, 218, 206; https://doi.org/10.1016/j.micromeso.2015.05.028.Search in Google Scholar
26. Chakravarty, R.; Bahadur, J.; Lohar, S.; Sarma, H. D.; Sen, D.; Mishra, R.; Chakraborty, S.; Dash, A. Solid State Synthesis of Mesoporous Alumina: A Viable Strategy for Preparation of an Advanced Nanosorbent for 99Mo/99mTc Generator Technology. Microporous Mesoporous Mater. 2019, 287, 271; https://doi.org/10.1016/j.micromeso.2019.06.020.Search in Google Scholar
27. Mostafa, M.; El-Sadek, A. A.; El-Said, H.; El-Amir, M. A. 99Mo/99mTc-113Sn/113mIn Dual Radioisotope Generator Based on 6-Tungstocerate(IV) Column Matrix. J. Nucl. Radiochem. Sci. 2009, 10, 1_1; https://doi.org/10.14494/jnrs.10.1_1.Search in Google Scholar
28. El-Sweify, F. H.; Abdel Fattah, A.E.-D. A.; El-Sheikh, R.; Aly, S. M.; Ghamry, M. A. Studies on 99 Mo– 99m Tc Adsorption and Elution Behaviors Using the Inorganic Sorbent Ceric Tungstate and Conventional Organic Resins. Radiochim. Acta. 2017, 105, 561; https://doi.org/10.1515/ract-2016-2665.Search in Google Scholar
29. Mostafa, M.; Saber, H. M.; El-Sadek, A. A.; Nassar, M. Y.; Amin, A. S. Sorption of Mo(VI) on Zirconium Molybdosilicate Gel and Potential Application as a 99Mo/99m Tc Generator. Radiochemistry 2016, 58, 409; https://doi.org/10.1134/s106636221604010x.Search in Google Scholar
30. Nawar, M. F.; El-Daoushy, A. F.; Ashry, A.; Soliman, M. A.; Türler, A. Evaluating the Sorption Affinity of Low Specific Activity 99Mo on Different Metal Oxide Nanoparticles. Inorganics 2022, 10, 154; https://doi.org/10.3390/inorganics10100154.Search in Google Scholar
31. Hiekal, A. S.; Aydia, M. I.; Essa, B. M.; Mahmoud, W. H.; El-Azony, K. M. Utilization of High Specific Activity 99 Mo for Assessing the Active Manganese Oxide as a Potential Material for 99 Mo/99m Tc Generator. Radiochim. Acta. 2023, 111, 545; https://doi.org/10.1515/ract-2023-0146.Search in Google Scholar
32. Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, Binary and Multi-Component Adsorption of Some Anions and Heavy Metals on Environmentally Friendly Carpobrotus edulis Plant. Colloids Surf., B 2011, 82, 267; https://doi.org/10.1016/j.colsurfb.2010.09.013.Search in Google Scholar PubMed
33. Wibowo, E.; Rokhmat, M.; Sutisna, K.; Abdullah, M. Reduction of Seawater Salinity by Natural Zeolite (Clinoptilolite): Adsorption Isotherms, Thermodynamics and Kinetics. Desalination 2017, 409, 146; https://doi.org/10.1016/j.desal.2017.01.026.Search in Google Scholar
34. Cho, D.-W.; Jeon, B.-H.; Jeong, Y.; Nam, I.-H.; Choi, U.-K.; Kumar, R.; Song, H. Synthesis of Hydrous Zirconium Oxide-Impregnated Chitosan Beads and Their Application for Removal of Fluoride and Lead. Appl. Surf. Sci. 2016, 372, 13; https://doi.org/10.1016/j.apsusc.2016.03.068.Search in Google Scholar
35. Zolle, I. Performance and Quality Control of the 99Mo/99mTc Generator. In Technetium-99m Pharmaceuticals; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007.10.1007/978-3-540-33990-8Search in Google Scholar
36. Wang, X.; Gan, Y.; Guo, S.; Ma, X.; Xu, M.; Zhang, S. Advantages of Titanium Xerogel over Titanium Tetrachloride and Polytitanium Tetrachloride in Coagulation: A Mechanism Analysis. Water Res. 2018, 132, 350; https://doi.org/10.1016/j.watres.2017.12.081.Search in Google Scholar PubMed
37. Puigdomenech, I. MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms)-Hydra Chemical Equilibrium Software, 2016. https://www.kth.se/che/medusa/.Search in Google Scholar
38. El-Absy, M. A.; Amin, M.; El-Amir, M. A.; Mostafa, M.; Ramadan, H. E. Advanced Prospects for the Preparation of Zirconium [99Mo]Molybdate(VI) Gel from Diluted Reactants and 99m Tc Elution Performance. Radiochemistry 2016, 58, 415; https://doi.org/10.1134/s1066362216040111.Search in Google Scholar
39. Asif, M.; Mushtaq, A. Evaluation of Highly Loaded Low Specific Activity 99Mo on Alumina Column as 99mTc Generator. J. Radioanal. Nucl. Chem. 2010, 284, 439; https://doi.org/10.1007/s10967-010-0490-z.Search in Google Scholar
40. El-Said, H.; Ramadan, H.; Abbas, M.; El-Hashash, M. 99 Mo/99m Tc Radioisotope Generator Based on Adsorption of 99 Mo (VI) on Cerium (IV) Molybdate Column Matrix. Radiochim. Acta. 2018, 106, 991; https://doi.org/10.1515/ract-2018-0002.Search in Google Scholar
41. Saptiama, I.; Lestari, E.; Sarmini, E.; Lubis, H.; Marlina, M.; Mutalib, A. Development of 99Mo/99mTc Generator System for Production of Medical Radionuclide 99mTc Using a Neutron-Activated 99Mo and Zirconium Based Material (ZBM) as its Adsorbent. Atom Indones. 2016, 42, 115; https://doi.org/10.17146/aij.2016.531.Search in Google Scholar
42. Qazi, Q. M.; Mushtaq, A. Preparation and Evaluation of Hydrous Titanium Oxide as a High Affinity Adsorbent for Molybdenum ( 99 Mo) and its Potential for Use in 99m Tc Generators. Radiochim. Acta. 2011, 99, 231; https://doi.org/10.1524/ract.2011.1817.Search in Google Scholar
43. Chakravarty, R.; Ram, R.; Dash, A.; Pillai, M. R. A. Preparation of Clinical-Scale 99Mo/99mTc Column Generator Using Neutron Activated Low Specific Activity 99Mo and Nanocrystalline γ-Al2O3 as Column Matrix. Nucl. Med. Biol. 2012, 39, 916; https://doi.org/10.1016/j.nucmedbio.2012.03.010.Search in Google Scholar PubMed
44. Chakravarty, R.; Shukla, R.; Ram, R.; Tyagi, A. K.; Dash, A.; Venkatesh, M. Practicality of Tetragonal Nano-Zirconia as a Prospective Sorbent in the Preparation of 99Mo/99mTc Generator for Biomedical Applications. Chromatographia 2010, 72, 875; https://doi.org/10.1365/s10337-010-1754-z.Search in Google Scholar
45. Denkova, A. G.; Terpstra, B. E.; Steinbach, O. M.; Dam, J. ten; Wolterbeek, H. T. Adsorption of Molybdenum on Mesoporous Aluminum Oxides for Potential Application in Nuclear Medicine. Sep. Sci. Technol. 2013, 48, 1331; https://doi.org/10.1080/01496395.2012.736443.Search in Google Scholar
46. Ma, C.; Vasileiadis, A.; Wolterbeek, H. T.; Denkova, A. G.; Serra Crespo, P. Adsorption of Molybdenum on Zr-Based MOFs for Potential Application in the 99Mo/99mTc Generator. Appl. Surf. Sci. 2022, 572, 151340; https://doi.org/10.1016/j.apsusc.2021.151340.Search in Google Scholar
47. Chakravarty, R.; Ram, R.; Mishra, R.; Sen, D.; Mazumder, S.; Pillai, M. R. A.; Dash, A. Mesoporous Alumina (MA) Based Double Column Approach for Development of a Clinical Scale 99 Mo/99m Tc Generator Using (N,γ) 99 Mo: An Enticing Application of Nanomaterial. Ind. Eng. Chem. Res. 2013, 52, 11673; https://doi.org/10.1021/ie401042n.Search in Google Scholar
48. Moret, J. L. T. M.; Alkemade, J.; Upcraft, T. M.; Oehlke, E.; Wolterbeek, H. T.; van Ommen, J. R.; Denkova, A. G. The Application of Atomic Layer Deposition in the Production of Sorbents for 99Mo/99mTc Generator. Appl. Radiat. Isot. 2020, 164, 109266; https://doi.org/10.1016/j.apradiso.2020.109266.Search in Google Scholar PubMed
49. Coenen, H. H.; Gee, A. D.; Adam, M.; Antoni, G.; Cutler, C. S.; Fujibayashi, Y.; Jeong, J. M.; Mach, R. H.; Mindt, T. L.; Pike, V. W.; Windhorst, A. D. Consensus Nomenclature Rules for Radiopharmaceutical Chemistry — Setting the Record Straight. Nucl. Med. Biol. 2017, 55, v; https://doi.org/10.1016/j.nucmedbio.2017.09.004.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2023-0223).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties
Articles in the same Issue
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties