Home Migration study of uranium in Beishan granite by the continuous column method
Article
Licensed
Unlicensed Requires Authentication

Migration study of uranium in Beishan granite by the continuous column method

  • Siyi Gong , Jinguang Zheng , Xin Yang , Yan Ma , Zhenfeng Tong and Tao Chen EMAIL logo
Published/Copyright: June 5, 2024

Abstract

Radionuclide migration is an essential process in the performance and safety assessments of radioactive waste repository. This study investigates uranium migration in Beishan granite using the continuous column method, focusing on the effects of flow rate, eluent pH, and carbonate. Experimental parameters were used to perform COMSOL simulations of the migration process. The findings reveal that mechanical dispersion plays a predominant role in uranium migration in the granite column. Notably, the impact of adsorption on migration appears to be limited, likely due to the brief contact time in the experimental setup. The study successfully demonstrates the capability of COMSOL in simulating radionuclide migration, offering significant insights for the performance and safety assessments of repository.


Corresponding author: Tao Chen, School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: Unassigned

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (12275083) and the Fundamental Research Funds for the Central Universities (2022MS040).

  1. Research ethics: Safety assessment of radioactive waste repository, radionuclide migration.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Natural Science Foundation of China (U1967212) Fundamental Research Funds for the Central Universities (2022MS040).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Gavrilescu, M.; Pavel, L. V.; Cretescu, I. Characterization and Remediation of Soils Contaminated with Uranium. J. Hazard. Mater. 2009, 163, 475–510. https://doi.org/10.1016/j.jhazmat.2008.07.103.Search in Google Scholar PubMed

2. Wang, J.; Chen, L.; Su, R.; Zhao, X. The Beishan Underground Research Laboratory for Geological Disposal of High-Level Radioactive Waste in China: Planning, Site Selection, Site Characterization and In Situ Tests. J. Rock. Mech. Geotech. Eng. 2018, 10, 411–435. https://doi.org/10.1016/j.jrmge.2018.03.002.Search in Google Scholar

3. Chen, Z. Y.; Wang, S. Y.; Hou, H. J.; Chen, K.; Gao, P. Y.; Zhang, Z.; Jin, Q.; Duoqiang Pan, D. Q.; Guo, Z. J.; Wu, W. S. China’s Progress in Radionuclide Migration Study over the Past Decade (2010–2021): Sorption, Transport and Radioactive Colloid. Chin. Chem. Lett. 2022, 33, 3405–3412. https://doi.org/10.1016/j.cclet.2022.02.054.Search in Google Scholar

4. Chen, P.; Ma, Y.; Kang, M. L.; Shang, C. M.; Song, Y.; Xu, F. Q.; Wang, J.; Song, G.; Yang, Y. Q. The Redox Behavior of Uranium on Beishan Granite: Effect of Fe2+ and Fe3+ Content. J. Environ. Radioact. 2020, 217, 106208. https://doi.org/10.1016/j.jenvrad.2020.106208.Search in Google Scholar PubMed

5. Palagyi, S.; Stamberg, K.; Vopalka, D. A Simplified Approach to Evaluation of Column Experiments as a Tool for Determination of Radionuclide Transport Parameters in Rock-Groundwater or Soil-Groundwater Systems. J. Radioanal. Nucl. Chem. 2015, 304, 945–954. https://doi.org/10.1007/s10967-014-3898-z.Search in Google Scholar

6. Yu, P.; Wang, S.; Alekseev, E. V.; Depmeier, W.; Hobbs, D. T.; Albrecht-Schmitt, T. E.; Phillips, B. L.; Casey, W. H. Technetium-99 MAS NMR Spectroscopy of a Cationic Framework Material that Traps TcO4− Ions. Angew. Chem., Int. Ed. 2010, 49, 5975–5977. https://doi.org/10.1002/anie.201002646.Search in Google Scholar PubMed

7. Kienzler, B.; Metz, V.; Brendebach, B.; Finck, N.; Plaschke, M.; Rabung, T.; Rothe, J.; Schild, D. Chemical Status of U(VI) in Cemented Waste Forms under Saline Conditions. Radiochim. Acta 2010, 98, 9–11. https://doi.org/10.1524/ract.2010.1768.Search in Google Scholar

8. Fan, Q. H.; Hao, L. M.; Wang, C. L.; Zheng, Z.; Liu, C. L.; Wu, W. S. The Adsorption Behavior of U(VI) on Granite. Environ. Sci.: Process. Impacts 2014, 16, 34–41. https://doi.org/10.1039/c3em00324h.Search in Google Scholar PubMed

9. Jin, Q.; Su, L.; Montavon, G.; Sun, Y. F.; Chen, Z. Y.; Guo, Z. J.; Wu, W. S. Surface Complexation Modeling of U(VI) Adsorption on Granite at Ambient/Elevated Temperature: Experimental and XPS Study. Chem. Geol. 2016, 433, 81–91. https://doi.org/10.1016/j.chemgeo.2016.04.001.Search in Google Scholar

10. Haragobinda, S.; Ranjan, K. M.; Puneet, K. S.; Snehasish, M.; Pankaj, K. P.; Kalyani, N. Column Bioleaching Applications, Process Development, Mechanism, Parametric Effect and Modelling: A Review. J. Ind. Eng. Chem. 2020, 90, 1–16. https://doi.org/10.1016/j.jiec.2020.07.012.Search in Google Scholar

11. Boving, T. B.; Grathwohl, P. Tracer Diffusion Coefficients in Sedimentary Rocks: Correlation to Porosity and Hydraulic Conduc-Tivity. J. Contam. Hydrol. 2001, 53, 85–100. https://doi.org/10.1016/S0169-7722(01)00138-3.Search in Google Scholar PubMed

12. Yuan, G. C.; Chen, T.; Liu, P. Migration Characteristics Study of Iodine in Crushed Beishan Granite Column under Dynamic Flow Condition. J. Radioanal. Nucl. Chem. 2019, 321, 693–699. https://doi.org/10.1007/s10967-019-06627-1.Search in Google Scholar

13. Zhang, Y. J.; Fan, C. Seepage Field-Strain Field Coupling Analysis for Rock Masses of Coal Seam Floor During Mining Based on COMSOL. AMR 2014, 3384, 1010–1012. https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.1467.Search in Google Scholar

14. Hao, T. T.; Wang, X.; Zhai, Y. C.; Chang, Y. L. Y.III Ion Migration in AlF3–(Li,Na)F–Y2O3 Molten Salt. Appl. Sci. 2022, 12, 2200. https://doi.org/10.3390/app12042200.Search in Google Scholar

15. DiBlasi, N. A.; Dardenne, K.; Prüssmann, T.; Duckworth, S.; Altmaier, M.; Gaona, X. Technetium Complexation with Multidentate Carboxylate-Containing Ligands: Trends in Redox and Solubility Phenomena. Environ. Sci. Technol. 2023, 57, 3661–3670. https://doi.org/10.1021/acs.est.2c09360.Search in Google Scholar PubMed

16. Masud, R. S.; Wu, Y.; Mimura, H.; Niibori, Y.; Onishi, T.; Koyama, S. Selective Separation of Re (VII) and Tc (VII) by Xerogel Microcapsules Enclosing TOA Extractant. Procedia Chem. 2012, 7, 258–267. https://doi.org/10.1016/j.proche.2012.10.042.Search in Google Scholar

17. Jiao, W. W.; Yang, H. J.; Zhao, Y.; Zhang, H. Z.; Zhou, Y. Y.; Zhang, J.; Xie, Q. L. Application of Trace Elements in the Study of Oil-Source Correlation and Hydrocarbon Migration in the Tarim Basin, China. Energ. Explor. Exploit. 2010, 28, 451–466. https://doi.org/10.1260/0144-5987.28.6.451.Search in Google Scholar

18. Natarajan, V. V. R.; Hunt, M. L.; Taylor, E. D. Local Measurements of Velocity Fluctuations and Diffusion Coefficients for a Granular Material Flow. J. Fluid Mech. 1995, 304, 1–25. https://doi.org/10.1017/S0022112095004320.Search in Google Scholar

19. Sebastien, K.; Liu, C. X. Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution. Geochim. Cosmochim. Acta 2010, 74, 4937–4952. https://doi.org/10.1016/j.gca.2010.06.007.Search in Google Scholar

20. Kumar, G. S.; Sekhar, M.; Misra, D. Time-Dependent Dispersivity of Linearly Sorbing Solutes in a Single Fracture with Matrix Diffusion. J. Hydrol. Eng. 2008, 13, 250–257. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:4(250).10.1061/(ASCE)1084-0699(2008)13:4(250)Search in Google Scholar

21. Jamain, J.; Touboul, J.; Rey, V.; Belibassakis, K. Porosity Effects on the Dispersion Relation of Water Waves through Dense Array of Vertical Cylinders. J. Mar. Sci. Eng. 2020, 8, 960. https://doi.org/10.3390/JMSE8120960.Search in Google Scholar

22. Baik, M. H.; Hyun, S. P.; Hahn, P. S. Surface and Bulk Sorption of Uranium(VI) onto Granite Rock. J. Radioanal. Nucl. Chem. 2003, 256, 11–18. https://doi.org/10.1023/A:1023331521718.10.1023/A:1023331521718Search in Google Scholar

23. Deng, N. B.; Yu, T.; Xie, J. S.; Chen, Z. P.; Xie, Q.; Zhao, P. C.; Liu, Z. J.; Zeng, W. J. Neutronic Study of Utilization of Discrete Thorium-Uranium Fuel Pins in CANDU-6 Reactor. Nucl. Eng. Technol. 2019, 51, 377. https://doi.org/10.1016/j.net.2018.10.022.Search in Google Scholar

24. Wang, Y.; Liu, Y. T.; Hu, X. W.; Li, Y.; Tu, H.; Wang, C. F.; Liu, Y.; Yuan, D. Z. Rational Structure Design for Enhanced Uranium(VI) Capture and Beyond: From Carbon Nanotubes to Graphene Oxide Nanoribbons. J. Mol. Liq. 2021, 323, 114639. https://doi.org/10.1016/j.molliq.2020.114639.Search in Google Scholar

25. Cheng, J. F.; Leng, Y. C.; Gu, R. Q.; Yang, G.; Wang, Y. H.; Tuo, X. G. Adsorption of Uranium(VI) from Groundwater by Amino-Functionalized Clay. J. Radioanal. Nucl. Chem. 2021, 327, 1365. https://doi.org/10.1007/s10967-021-07617-y.Search in Google Scholar

26. Wang, C. L.; Yang, X. Y.; Wei, F. X.; He, J. G.; Qi, L. Y.; Liu, C. L. The Influence of pH on Diffusion of 75Se(IV) in Beishan Granite. J. Radioanal. Nucl. Chem. 2019, 319, 365–377. https://doi.org/10.1007/s10967-018-6344-9.Search in Google Scholar

27. Qiang, J., Wang, G., Ge, M. T., Chen, Z. Y. Adsorption of U(VI), Th(IV) and Eu(III)/Am(III) on Beishan Granite and Gaomiaozi Bentonite: Effects of Temperature and Humic Substances. App. Geochem. 2014, 47, 17–24; https://doi.org/10.1016/j.apgeochem.2014.05.004.Search in Google Scholar

28. Han, L. F.; Zhang, E. Y.; Yang, Y.; Sun, K.; Fang, L. Q. Highly Efficient U(VI) Removal by Chemically Modified Hydrochar and Pyrochar Derived from Animal Manure. J. Clean. Prod. 2020, 264, 121542. https://doi.org/10.1016/j.jclepro.2020.121542.Search in Google Scholar

29. Pu, Y. D.; Qiang, T. T.; Li, G. X.; Ruan, X. N.; Ren, L. F. Efficient Adsorption of Low-Concentration Uranium from Aqueous Solutions by Biomass Composite Aerogel. Ecotoxicol. Environ. Saf. 2023, 259, 115053. https://doi.org/10.1016/j.ecoenv.2023.115053.Search in Google Scholar PubMed

30. Pan, J. L.; Xi, X.; Wu, X.; Guo, Q. F.; Ren, F. H.; Cai, M. F. Physical Properties Evolution and Microscopic Mechanisms of Granite Modified by Thermal and Chemical Stimulation. Case Stud. Therm. Eng. 2023, 41, 102633. https://doi.org/10.1016/j.csite.2022.102633.Search in Google Scholar

31. Yang, W.; Chen, R. P.; Kang, X.; Ali, Z. Radionuclide Adsorption Mechanism in Buffer Materials in High-Level Radioactive Waste Container: MD Study. Chin. J. Geotech. Eng. 2020, 42, 239–245. https://doi.org/10.11779/CJGE202002004.Search in Google Scholar

32. Sklyarov, E. V.; Fedorovsky, V. S.; Kotov, A. B.; Lavrenchuk, A. V.; Mazukabzov, A. M.; Starikova, A. E. Carbonate and Silicate-Carbonate Injection Complexes in Collision Systems: The West Baikal Region as an Example. Geotectonics 2013, 47, 180–196. https://doi.org/10.1134/S0016852113020064.Search in Google Scholar

33. Shu, B.; Chen, J. J.; Xue, H. Experimental Study of the Change of Pore Structure and Strength of Granite after Fluid-Rock Interaction in CO2-EGS. Renew. Energy 2024, 220, 119635. https://doi.org/10.1016/j.renene.2023.119635.Search in Google Scholar

34. Wazne, M.; Korfiatis, G. P.; Meng, X. G. Carbonate Effects on Hexavalent Uranium Adsorption by Iron Oxyhydroxide. Environ. Sci. Technol. 2003, 37, 3619–3624. https://doi.org/10.1021/es034166m.Search in Google Scholar PubMed

35. Stewart, B. D.; Mayes, M. A.; Fendorf, S. Impact of Uranyl-Calcium-Carbonato Complexes on Uranium(VI) Adsorption to Synthetic and Natural Sediments. Environ. Sci. Technol. 2010, 44, 928–934. https://doi.org/10.1021/es902194x.Search in Google Scholar PubMed

36. Lu, S. H.; Zhu, K. R.; Hayat, T.; Alharbi, N. S.; Chen, C. L.; Song, G.; Chen, D. Y.; Sun, Y. B. Influence of Carbonate on Sequestration of U(VI) on Perovskite. J. Hazard. Mater. 2019, 364, 100–107. https://doi.org/10.1016/j.jhazmat.2018.10.035.Search in Google Scholar PubMed

37. Zhou, W. Q.; Xian, D. F.; Su, X. B.; Li, Y.; Que, W. M.; Shi, Y. L.; Wang, J. Y.; Liu, C. L. Macroscopic and Spectroscopic Characterization of U(VI) Sorption on Biotite. Chemosphere 2020, 255, 126942. https://doi.org/10.1016/j.chemosphere.2020.126942.Search in Google Scholar PubMed

38. Yang, Z. Z.; Kang, M. L.; Ma, B.; Xie, J. L.; Chen, F. R.; Charlet, L.; Liu, C. L. Inhibition of U(VI) Reduction by Synthetic and Natural Pyrite. Environ. Sci. Technol. 2014, 48, 10716–10724. https://doi.org/10.1021/es502181x.Search in Google Scholar PubMed

39. Schindler, M.; Hawthorne, F. C.; Freund, M. S.; Burns, P. C. XPS Spectra of Uranyl Minerals and Synthetic Uranyl Compounds. I: The U 4f Spectrum. Geochim. Cosmochim. Acta 2009, 73, 2471–2487. https://doi.org/10.1016/j.gca.2008.10.042.Search in Google Scholar

40. Qiang, S. R.; Wang, J. J.; Wang, Y.; Yuan, L. M.; Shi, L. P.; Ding, Z.; Wang, W.; Liang, J. J.; Li, P.; Fan, Q. H. Analysis of the Uranium Chemical State by XPS: Is What You See Real? Appl. Surf. Sci. 2022, 576, 151886. https://doi.org/10.1016/j.apsusc.2021.151886.Search in Google Scholar

41. Dunn, S.; Roussel, P.; Poile, C.; Higginson, M.; Kaye, P.; Shaw, T.; Gilbert, M. R.; Watts, J. F. Identification of Uranium Hexavalent Compounds Using X-Ray Photoelectron Spectroscopy. J. Radioanal. Nucl. Chem. 2022, 331, 79–88. https://doi.org/10.1007/s10967-021-08085-0.Search in Google Scholar

42. Kim, J. U.; Kim, B.; Shahbaz, H. M.; Lee, S. H.; Park, D.; Park, J. Encapsulation of Probiotic Lactobacillus acidophilus by Ionic Gelation with Electrostatic Extrusion for Enhancement of Survival Under Simulated Gastric Conditions and During Refrigerated Storage. Int. J. Food Sci. Technol. 2016, 52, 519–530. https://doi.org/10.1111/ijfs.13308.Search in Google Scholar

43. Ilton, E. S.; Boily, J.; Buck, E. C.; Skomurski, F. N.; Rosso, K. M.; Cahill, C. L.; Bargar, J. R.; Felmy, A. R. Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite–Solution Interface. Environ. Sci. Technol. 2010, 44, 170–176. https://doi.org/10.1021/es9014597.Search in Google Scholar PubMed

44. Chen, T.; Li, C.; Liu, X. Y.; Wang, L. H.; Zheng, Z.; Wang, X. Y.; Liu, C. L. Migration Study of Iodine in Beishan Granite by a Column Method. J. Radioanal. Nucl. Chem. 2013, 298, 219–225. https://doi.org/10.1007/s10967-013-2516-9.Search in Google Scholar

45. Wang, H. L.; Xu, W. Y.; Zuo, J. Compact Rock Material Gas Permeability Properties. Phys. B: Condens. Matter 2014, 449, 10–18. https://doi.org/10.1016/j.physb.2014.04.049.Search in Google Scholar

46. Schild, M.; Siegesmund, S.; Vollbrecht, A.; Mazurek, M. Characterization of Granite Matrix Porosity and Pore-Space Geometry by In Situ and Laboratory Methods. Geophys. J. Int. 2001, 146, 111–125. https://doi.org/10.1046/j.0956-540x.2001.01427.x.Search in Google Scholar

47. Wu, X. H.; Guo, Q. F.; Zhu, Y.; Ren, F. H.; Zhang, J.; Wu, X.; Meifeng Cai, M. F. Pore Structure and Crack Characteristics in High-Temperature Granite under Water-Cooling. Case Stud. Therm. Eng. 2021, 28, 101646. https://doi.org/10.1016/j.csite.2021.101646.Search in Google Scholar

48. Ko, N. Y.; Jeong, J.; Kim, K. S. Effects of Groundwater Flow Rate Distribution at a Disposal Depth on Migration of Radionuclides Released from Potential Deposition Holes. J. Nucl. Fuel Cycle Waste Technol. 2014, 12, 191–198. https://doi.org/10.7733/jnfcwt.2014.12.3.191.Search in Google Scholar

49. Cao, X. Y.; Zheng, L. G.; Hou, D. Y.; O’Connor, D.; Hu, L. T.; Wu, J. Modeling the Risk of U(VI) Migration through an Engineered Barrier System at a Proposed Chinese High-Level Radioactive Waste Repository. Sci. Total Environ. 2020, 707, 13547. https://doi.org/10.1016/j.scitotenv.2019.135472.Search in Google Scholar PubMed

50. Zhang, X. Y.; Ma, F. N.; Dai, Z. X.; Wang, J.; Chen, L.; Ling, H.; Soltanian, M. R. Radionuclide Transport in Multi-Scale Fractured Rocks: A Review. J. Hazard. Mater. 2022, 424, 127550. https://doi.org/10.1016/j.jhazmat.2021.127550.Search in Google Scholar PubMed

Received: 2024-01-30
Accepted: 2024-05-22
Published Online: 2024-06-05
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0281/html
Scroll to top button