Abstract
The residence time distribution (RTD) is very reliable, providing valuable information about the performance of process equipment such as reactors and columns. The aim of this work is to study the effect of agitation in the hydrodynamic column of flow-rig. In this case, residence time distribution (RTD) is determined using the radiotracer approach. The radiotracer is the Technetium Tc-99m with half decay 6 h. It also emits gamma rays with an energy of 0.140 MeV. 2 mL of approximately 9 mCi activity Tc-99m was injected inside the column. The results show that in the conditions studied the column presents the anomaly, dead volume. The Intensity function A(t) confirms this result. Agitation has a beneficial effect in the reduction of dead volume. To revise the conception of the column or study other parameters like the variation flow rate can reduce or eliminate the dead volume. The RTD model indicated the column behaved as a Plug flow reactor (PFR) with mixing cells in serie (J = 4) model and the RTD experiment verified the model well.
Acknowledgments
The authors would like to thank the radiation protection staff of the Algiers Nuclear Research Centre for the use of radio-active tracing experiments without contamination. (C.R.N.A).
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Stavsetra, L.; Fure, K.; Haugan, A.; Bjørnstad, T. Development of an Oil Tracer Labelled with 137mBa. EPJ Web Conf. 50, 2013, 05002; https://doi.org/10.1051/epjconf/20135005002.Suche in Google Scholar
2. Kasban, H.; Hamed, A. Spectrum Analysis of Radiotracer Residence Time Distribution for Industrial and Environmental Applications. J. Radioanal. Nucl. Chem. 2014, 300, 379e384.10.1007/s10967-014-2924-5Suche in Google Scholar
3. Pant, H. J.; Sharma, V. K. Radiotracer Investigation in an Industrial-Scale Oxidizer. Appl. Radiat. Isotopes. 2015, 99, 146e149; https://doi.org/10.1016/j.apradiso.2015.02.018.Suche in Google Scholar PubMed
4. Pant, H. J.; Sharma, V. K.; Shenoy, K. T.; Sreenivas, T. Measurements of Liquid Phase Residence Time Distributions in a Pilot-Scale Continuous Leaching Reactor Using Radiotracer. Appl. Radiat. Isot. 2015; https://doi.org/10.1016/j.apradiso.2014.12.010.Suche in Google Scholar PubMed
5. Kasban, H.; Zahran, O.; Arafa, H.; El-Kordy, M.; Elaraby, S. M. S.; Abd El-Samie, F. E. Using Radiotracer in Industrial Applications 27th National Radio Science Conference, Menouf, Egypt, 2010.Suche in Google Scholar
6. Zahran, O.; Kasban, H.; El-Kordy, M.; Abd El-Samie, F. E. Power Density Spectrum for Residence Time Distribution Signals Identification. Appl. Radiat. Isotopes. 2012, 70, 2638e2645.10.1016/j.apradiso.2012.05.006Suche in Google Scholar PubMed
7. IAEA. Radiotracer Technology As Applied to Industry--1262; IAEA: Vienna & Austria, 2001.Suche in Google Scholar
8. Danckwerts, P. V. Continuous Flow Systems. Distribution of Residence Times. Chem. Eng. Sci. 1953, 2, 1-13, https://doi.org/10.1016/0009-2509(53)80001-1.Suche in Google Scholar
9. Bischoff, K. B., Mc Cracken, E. A. Tracer Tests in Flow Systems. Ind. and Eng. Chem. 1966, 58 (7), 18-31, https://doi.org/10.1021/ie50679a005.Suche in Google Scholar
10. Levenspiel, O. Chemical Reaction Engineering; Wiley: New York, 1972.Suche in Google Scholar
11. Leclerc, J. P., Claudel, S., Lintz, H. G., Potier, O. et Antoine, B. Theoretical Interpretation of Residence-Time Distribution Measurements in Industrial Processes. Oil Gas Sci. Technol.– rev. ifp. 2000, 55, 159-169, https://doi.org/10.2516/ogst:2000009.10.2516/ogst:2000009Suche in Google Scholar
12. Villermaux, J. Génie de la réaction chimique : conception et fonctionnement des réacteurs, 2nd ed.: Paris: Tec & Doc Lavoisier, 1993.Suche in Google Scholar
13. Mostoufi, N.; Cui, H.; Chaouki, J. A Comparison of Two- and Single-phase Models for Fluidized-Bed Reactors. Ind. Eng. Chem. Res. 2001, 40, 5526–5532; https://doi.org/10.1021/ie010121n.Suche in Google Scholar
14. Santos, V.; Dantas, C. Transit Time and RTD Measurements by Radioactive Tracer to Assess the Riser Flow Pattern. Powder Technol. 2004, 140, 116–121; https://doi.org/10.1016/j.powtec.2004.01.005.Suche in Google Scholar
15. Roustan, M. Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux, Edition TEC&DOC, 2003.Suche in Google Scholar
16. Hu, Q. H. Technetium. In Radionuclides in the Environment; Atwood, D. A., Ed.; Wiley: New Work, 2010; pp. 217–226.10.1002/9781119951438.eibc0430Suche in Google Scholar
17. Pant, H. J.; Sharma, V. K.; Kamudu, M. V.; Prakash, S.; Krishanamoorthy, S.; Anandam, G.; Rao, P. S.; Ramani, N.; Singh, G.; Sonde, R. R. Investigation of the Flow Behaviour of Coal Particles in a Pilot-Scale Fluidized Bed Gasifier (FBG) Using Radiotracer Technique. Appl. Radiat. Isot. 2009a, 67, 1609–1615; https://doi.org/10.1016/j.apradiso.2009.04.003.Suche in Google Scholar PubMed
18. IAEA. Radiotracer Residence Time Distribution Method For Industrial And Environmental Applications: Vienna &Austria, 2008.Suche in Google Scholar
19. Sheoran, M., Chandra, A., Bhunia, H., Bajpai, P. K., Pant, H. J. Residence Time Distribution Studies Using Radiotracers in Chemical Industry-A Review. Chem. Eng. Commun. 2018, 205, 739–758; https://doi.org/10.1080/00986445.2017.1410478.Suche in Google Scholar
20. Othman, N., Jasni, N. S., Rosli, N. R., Yusof, N. H., Shari, M. R., Hassan, H., Mahmood, A. A., Terry, A. M., Abdullah, N. Residence Time Distribution (RTD) Model of Water Flooding in Vertical Sand Column Using Technetium-99m as the Radiotracer. Malaysian J. Chem. Eng. Ind. 2022, 5, 99–106; https://doi.org/10.24191/mjcet.v5i2.19758.Suche in Google Scholar
21. Ham, J. H., Platzer, B. Semi-Empirical Equations for the Residence Time Distributions in Disperse Systems – Part 1: Continuous Phase. Chem. Eng. Technol. 2004, 27, 1172–1178; https://doi.org/10.1002/ceat.200407038.Suche in Google Scholar
22. Thyn, J.; Zitny, R.; Kluson, J.; Cechak, T. Analysis and Diagnostics of Industrial Processes by Radiotracers and Radioisotope Sealed Sources I; Department of Process Engineering, Faculty of Mechanical Engineering, CTU: Praha, 2000.Suche in Google Scholar
23. Naumann, E. B.; Buffham, B. A. Mixing in Continuous Flow Systems; John Wiley: New York, 1983.Suche in Google Scholar
24. Dagadu, C. P. K.; Akaho, E. H. K.; Danso, K. A.; Affum, H. A. Determination of Malfunctions in Gold Processing Tanks by RTD Modelling. Res. J. Appl. Sci. 2012, 4, 262–268.Suche in Google Scholar
25. Levenspiel, O. Chemical Reaction Engineering, 4th ed.; Wiley India Private Ltd: New Delhi, 2004.Suche in Google Scholar
26. Fogler, H. S. Elements of Chemical Reaction Engineering, 2nd ed.; Prentice-Hall of India Private Limited: New Delhi, 2010.Suche in Google Scholar
27. IAEA. Radiotracer Applications in Industry: A Guidebook, Safety Reports Series 423; IAEA: Vienna Austria, 2004.Suche in Google Scholar
28. Guisnet, M. Réactions et réacteurs chimiques : cinétique chimique : cours et exercices; Ellipses: Paris, 2007; p. 270.Suche in Google Scholar
29. Berne, P., Bjornstad, T., Brisset, P., Charlton, S., Chmielewski, A., Genders, S., Griffith, J. M., Hills, A., Jin, J. H., Jung, S. H., Khan, S. H., Maggio, G., Martins Moreira, R., Pant, H. J., Thereska, J., Zhang, P. Radiotracer Residence Time Distribution Method for Industrial Applications and Environment: Material for Education and On-the-Job Training for Practitioners of Radiotracer Technology; International Atomic Energy Agency: Vienna, 2008.Suche in Google Scholar
30. Kasban, H.; Zahran, O.; Arafa, H.; El-Kordy, M.; Elaraby, S. M. S.; El-Samie, F. E. A. Laboratory Experiments and Modelling for Industrial Radiotracer Applications. Appl. Radiat. Isot. 2010, 68, 1049–1056; https://doi.org/10.1016/j.apradiso.2010.01.044.Suche in Google Scholar PubMed
31. Rodrigues, A. E. Residence Time Distribution (RTD) Revisited. Chem. Eng. Sci. 2021, 230, 116188; https://doi.org/10.1016/j.ces.2020.116188.Suche in Google Scholar PubMed PubMed Central
32. Mills, M. A.; Bonner, J. S.; McDonald, T. J.; Page, R. L. & C. A. In Intrinsic Bioremediation of Petroleum Impacted Wetland, Marine Pollution Bulletin, Environmental Research; Autenvieth, R. L., Ed., Vol. 7, 2002; pp. 889–900.10.1016/S0025-326X(02)00367-3Suche in Google Scholar PubMed
33. Coker, K. A. Modelling of Chemical Kinetics and Reactor Design; Gulf Professional Publishing, 2001.Suche in Google Scholar
34. Claudel, S.; Leclerc, J. P.; Tétar, L.; Lintz, H. G.; Bernard, A. Recent Extensions of the Residence Time Distribution Concept: Unsteady State Conditions and Hydrodynamic Model Developments. Braz. J. Chem. Eng. 2000, 17 (4–7); https://doi.org/10.1590/s0104-66322000000400059.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties