An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
Abstract
The standardisation of nuclear reaction cross section data is an integral part of optimisation of production routes of medical radionuclides. The production cross sections are available for the reactor and cyclotron produced radionuclides to be used for diagnostics or therapeutic procedures. The types of nuclear data needed, and the sources of their availability are summarized. The method of standardisation of charged-particle data is briefly described. A historical overview of research work in Pakistan in this direction is given. Examples of a few medically important radionuclides, such as 64Cu, 86Y, 89Zr, 103Pd, 186Re, etc., whose data were standardised and evaluated are highlighted. Calculated thick target yields from the recommended data are given. Some new directions in the nuclear data research are outlined.
Acknowledgements
The authors are very grateful to Prof. Dr. H. C. Mult. S.M. Qaim for exceptional help and tremendous guidance to develop the nuclear data research group in Pakistan. His strong editorial support in the preparation of this review is also highly appreciated. Mazhar Hussain and M. Naveed Aslam were trained by Prof. Sandor Sudár for nuclear model calculations at the University of Debrecen (Hungary). His very kind mentoring during their PhD is highly acknowledged. Prof. Dr. F. Tárkányi facilitated and supervised the experiments at ATOMKI. His untiring and unconditional support is highly valued. Prof. Dr. Riaz Ahmad and Prof. Dr. Hassan A. Shah facilitated much of the infrastructure and computing facilities at the Department of Physics, Government College University Lahore.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine metallic. Radiochim. Acta 1995, 70, 249–272.10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar
2. Herzog, H. In vivo functional imaging with SPECT and PET. Radiochim. Acta 2001, 89, 203–214, https://doi.org/10.1524/ract.2001.89.4-5.203.Suche in Google Scholar
3. Madsen, M. T. Recent advances in SPECT imaging. J. Nucl. Med. 2007, 48, 661–673, https://doi.org/10.2967/jnumed.106.032680.Suche in Google Scholar
4. Smith, S. V., Jones, M., Holmes, V. Production and selection of metal PET radioisotopes for molecular imaging. In Applications in Bio-Medical Science; Singh, N., Ed.; IntechOpen: London, 2011.Suche in Google Scholar
5. Qaim, S. M., Scholten, B., Spahn, I., Nenmaier, B. Positron-emitting radionuclides for applications with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011–1026, https://doi.org/10.1515/ract-2019-3154.Suche in Google Scholar
6. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49, https://doi.org/10.1016/j.nucmedbio.2016.08.016.Suche in Google Scholar
7. Qaim, S. M. Medical Radionuclide Production – Science and Technology; Walter de Gruyter: Berlin, Boston, 2019; p xI1+289. 978-3-11-060156-5.10.1515/9783110604375Suche in Google Scholar
8. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189–196, https://doi.org/10.1524/ract.2001.89.4-5.189.Suche in Google Scholar
9. Qaim, S. M. Use of cyclotrons in medicine. Radiat. Phys. Chem. 2004, 71, 917–926, https://doi.org/10.1016/j.radphyschem.2004.04.124.Suche in Google Scholar
10. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625, https://doi.org/10.1524/ract.2011.1870.Suche in Google Scholar
11. Tárkányi, F., Ditroi, F., Takacs, S., Szelecsényi, F., Hermanne, A., Sonck, M. Activation cross-sections of alpha induced nuclear reactions on iron up to 40 MeV. Nucl. Instrum. Methods Phys. B. 2003, 207, 381–394.10.1016/S0168-583X(03)01116-9Suche in Google Scholar
12. Valdovinos, H. F., Hernandez, R., Graves, S., Ellison, P. A., Barnhart, T. E., Theuer, C. P., Engle, J. W., Cai, W., Nickles, R. J. Cyclotron production and radiochemical separation of 55Co and 58mCo from 54Fe, 58Ni and 57Fe targets. Appl. Radiat. Isot. 2017, 130, 90–101, https://doi.org/10.1016/j.apradiso.2017.09.005.Suche in Google Scholar PubMed PubMed Central
13. Königs, U., Humpert, S., Spahn, I., Qaim, S. M., Neumaier, B. Isolation of high purity 73Se using solid phase extraction after selective 4,5-[73Se] benzopiazselenol formation with aminonaphthalene. Radiochim. Acta 2018, 106, 497–505.10.1515/ract-2017-2864Suche in Google Scholar
14. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651, https://doi.org/10.1524/ract.2012.1966.Suche in Google Scholar
15. NuDat, 3.0. Data source: National Nuclear Data Center, Brookhaven National Laboratory, Based on ENSDF and the Nuclear Wallet. Cards 2021. http://www.nndc.bnl.gov/nudat2.Suche in Google Scholar
16. Koning, A. J., Rochman, D. Towards sustainable nuclear energy: putting nuclear physics to work. Ann. Nucl. Energy 2008, 35, 2024–2030, https://doi.org/10.1016/j.anucene.2008.06.004.Suche in Google Scholar
17. IAEA. CINDA 2002; International Atomic Energy Agency: Vienna, 2002. https://www-nds.iaea.org/exfor/cinda.htm.Suche in Google Scholar
18. McLane, V. EXFOR Basics. A Short Guide to the Nuclear Reaction Data Exchange Format; International Atomic Energy Agency: Vienna, 2000.10.2172/767086Suche in Google Scholar
19. Zerkin, V. V., Pritychenko, B. The experimental nuclear reaction data (EXFOR): extended computer database and Web retrieval system. J. Nucl. Ins. Meth. 2018, 888, 31–43, https://doi.org/10.1016/j.nima.2018.01.045.Suche in Google Scholar
20. Qaim, S. M. Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta 1982, 30, 147–162.Suche in Google Scholar
21. Qaim, S. M., Stöcklin, G. Production of some medically important short-lived neutron deficient radioisotopes of halogens. Radiochim. Acta 1983, 34, 25–40, https://doi.org/10.1524/ract.1983.34.12.25.Suche in Google Scholar
22. Qaim, S. M. Cyclotron production of generator radionuclides. Radiochim. Acta 1987, 41, 111–118, https://doi.org/10.1524/ract.1987.41.23.111.Suche in Google Scholar
23. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–304, https://doi.org/10.1524/ract.2001.89.4-5.297.Suche in Google Scholar
24. Gul, K., Hermanne, A., Mustafa, M. G., Nortier, M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Y. N., Takács, S., Tárkányi, F., Zhuang, Y. Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes And Monitor Reactions; IAEA TECDOC 1211: Vienna, 2001; pp 49–152. http://www-nds.iaea.org/medical/.Suche in Google Scholar
25. Tárkányi, F., Capote, R. Nuclear data for the production of therapeutic radionuclides. In Technical Report Seires No. 473; Qaim, S.M., Ed.; IAEA: Vienna, 2011.Suche in Google Scholar
26. Engle, J. W., Ignatyuk, A. V., Capote, R., Carlson, B. V., Hermanne, A., Kellett, M. A., Kibedi, T., Kim, G., Kondev, F. G., Hussain, M. Recommended nuclear data for the production of selected therapeutic radionuclides. Nucl. Data Sheets 2019, 155, 56–74, https://doi.org/10.1016/j.nds.2019.01.003.Suche in Google Scholar
27. Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibedi, T., Kim, G. N., Kondev, F. G. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J. Radioanal. Nucl. Chem. 2019, 319, 533–666.10.1007/s10967-018-6380-5Suche in Google Scholar
28. Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibedi, T., Kim, G. N., Kondev, F. G. Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters. J. Radioanal. Nucl. Chem. 2019, 319, 487–531.10.1007/s10967-018-6142-4Suche in Google Scholar
29. Medical Portal of the International Atomic Energy Agency. https://www.iaea.org/.Suche in Google Scholar
30. Synowiecki, M. A., Perk, L. R., Nijsen, J. F. W. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiophar. Chem. 2018, 3, 1–25, https://doi.org/10.1186/s41181-018-0038-z.Suche in Google Scholar PubMed PubMed Central
31. Capote, R., Nichols, A. L., Nortier, F. M., Carlson, B. V., Engle, J. W., Hermanne, A., Hussain, M., Ignatyuk, A. V., Kellett, M. A., Kibédi, T. IAEA coordinated research project on nuclear data for charged-particle monitor reactions and medical isotope production. EPJ Web Conf. 2017, 146, 08007, https://doi.org/10.1051/epjconf/201714608007.Suche in Google Scholar
32. Amjed, N., Hussain, M., Aslam, M. N., Tárkányi, F., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide 55Co. Appl. Radiat. Isot. 2016, 108, 38–48, https://doi.org/10.1016/j.apradiso.2015.11.058.Suche in Google Scholar PubMed
33. Aslam, M. N., Qaim, S. M. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isot. 2014, 89, 65–73, https://doi.org/10.1016/j.apradiso.2014.02.007.Suche in Google Scholar PubMed
34. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Shah, H. A., Qaim, S. M. Charged particle induced reaction cross section data for production of the emerging medically important positron emitter 64Cu: a comprehensive evaluation. Radiochim. Acta 2009, 97, 669–686, https://doi.org/10.1524/ract.2009.1670.Suche in Google Scholar
35. Aslam, N., Amjed, N., Qaim, S. M. Evaluation of excitation functions of the 68,67,66Zn(p,xn)68,67,66Ga and 67Zn(p,α)64Cu reactions: validation of evaluated data through comparison with experimental excitation functions of the natZn(p,x)66,67Ga and natZn(p,x)64Cu processes. Appl. Radiat. Isot. 2015, 96, 102–113, https://doi.org/10.1016/j.apradiso.2014.11.002.Suche in Google Scholar PubMed
36. Amjed, N., Aslam, M. N., Hussain, M., Qaim, S. M. Evaluation of nuclear reaction cross section data of proton and deuteron induced reactions 75As, with particular emphasis on the production of 73Se. Radiochem. Acta 2021, 109, 525–537.10.1515/ract-2021-1018Suche in Google Scholar
37. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Qaim, S. M. Evaluation of excitation functions of proton, 3He- and α-particle induced reactions for production of the medically interesting positron-emitter bromine-76. Appl. Radiat. Isot. 2011, 69, 1490–1505, https://doi.org/10.1016/j.apradiso.2011.06.003.Suche in Google Scholar PubMed
38. Zaneb, H., Hussain, M., Amjed, N., Qaim, S. M. Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y. Appl. Radiat. Isot. 2015, 104, 232–241, https://doi.org/10.1016/j.apradiso.2015.07.004.Suche in Google Scholar
39. Zaneb, H., Hussain, M., Amjed, N., Qaim, S. M. Evaluation of nuclear reaction cross section data for the production of 87Y and 88Y via proton, deuteron and alpha-particle induced transmutations. Appl. Radiat. Isot. 2016, 112, 69–79, https://doi.org/10.1016/j.apradiso.2016.03.016.Suche in Google Scholar
40. Amjed, N., Wajid, A. M., Ahmad, N., Ishaq, M., Aslam, M. N., Hussain, M., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the important non-standard positron emitting radionuclide 89Zr using proton and deuteron induced reactions on 89Y target. Appl. Radiat. Isot. 2020, 165, 1–9, https://doi.org/10.1016/j.apradiso.2020.109338.Suche in Google Scholar
41. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Shah, H. A., Qaim, S. M. Evaluation of excitation functions of proton and deuteron induced reactions on enriched tellurium isotopes with special relevance to the production of iodine-124. Appl. Radiat. Isot. 2010, 68, 1760–1773, https://doi.org/10.1016/j.apradiso.2010.03.004.Suche in Google Scholar
42. Aslam, M. N., Sudár, S., Hussain, M., Malik, A. A., Qaim, S. M. Evaluation of excitation functions of 3He- and α-particle induced reactions on antimony isotopes with special relevance to the production of iodine-124. Appl. Radiat. Isot. 2011, 69, 94–104, https://doi.org/10.1016/j.apradiso.2010.07.022.Suche in Google Scholar
43. Ali, W., Tashfeen, M., Hussain, M. Evaluation of nuclear reaction cross sections via proton induced reactions on 55Mn for the production of 52Fe: a potential candidate for theranostic applications. Appl. Radiat. Isot. 2019, 144, 124–129, https://doi.org/10.1016/j.apradiso.2018.11.016.Suche in Google Scholar
44. Hussain, M., Sudár, S., Aslam, M. N., Shah, H. A., Ahmad, R., Malik, A. A., Qaim, S. M. A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2009, 67, 1842–1854, https://doi.org/10.1016/j.apradiso.2009.06.010.Suche in Google Scholar
45. Aslam, M. N., Zubia, K., Qaim, S. M. Nuclear model analysis of excitation functions of α-particle induced reactions on in and Cd up to 60 MeV with relevance to the production of high specific activity 117mSn. Appl. Radiat. Isot. 2018, 132, 181–188, https://doi.org/10.1016/j.apradiso.2017.12.002.Suche in Google Scholar
46. Hussain, M., Sudár, S., Aslam, M. N., Malik, A. A., Ahmad, R., Qaim, S. M. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim. Acta 2010, 98, 385–395, https://doi.org/10.1524/ract.2010.1733.Suche in Google Scholar
47. RIPL-3, d. International Atomic Energy Agency: Vienna. www.ds-iaea.org/RIPL-3/.Suche in Google Scholar
48. Sudár, S., Cserpák, F., Qaim, S. M. Measurements and nuclear model calculations on proton induced reactions on 103Rh upto 40 MeV: evaluation of the excitation function of the 103Rh(p,n)103Pd reaction relevant to the production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2002, 56, 821–831.10.1016/S0969-8043(02)00054-4Suche in Google Scholar
49. Jalilian, A. R., Osso, J. The current status and future of theranostic Copper-64 radiopharmaceuticals. Iran. J. Nucl. Med. 2017, 25, 1–10.Suche in Google Scholar
50. Blower, P. J., Lewis, J. S., Zweit, J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol. 1996, 23, 957–980, https://doi.org/10.1016/s0969-8051(96)00130-8.Suche in Google Scholar
51. Zhou, Y., Li, J., Xu, X., Zhao, M., Zhang, B., Deng, S., Wu, Y. 64Cu-based radiopharmaceuticals in molecular imaging. Technol. Cancer Res. Treat. 2019, 18, 1–10; https://doi.org/10.1177/1533033819830758.Suche in Google Scholar
52. Szelecsényi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575–580.10.1016/0969-8043(93)90172-7Suche in Google Scholar
53. Uddin, M., Chakraborty, A., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305–314, https://doi.org/10.1515/ract-2015-2527.Suche in Google Scholar
54. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222–2226.Suche in Google Scholar
55. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56.10.3390/ph10020056Suche in Google Scholar PubMed PubMed Central
56. Rösch, F., Qaim, S. M., Stöcklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr (p,n)-and natRb (3He,xn)-processes. Radiochim. Acta 1993, 61, 1–8.10.1524/ract.1993.61.1.1Suche in Google Scholar
57. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morrell, J. T., Zaneb, H., Rios, J. A., Spahn, I. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction. Radiochim. Acta 2020, 108, 747–756, https://doi.org/10.1515/ract-2020-0021.Suche in Google Scholar
58. Severin, G. W., Engle, J. W., Barnhart, T. E., Nickles, R. J. 89Zr radiochemistry for positron emission tomography. J. Med. Chem. 2011, 7, 389–394, https://doi.org/10.2174/157340611796799186.Suche in Google Scholar PubMed PubMed Central
59. Deri, M. A., Zeglis, B. M., Francesconi, L. C., Lewis, J. S. PET imaging with 89Zr: from radiochemistry to the clinic. J. Nucl. Med. 2013, 40, 3–14, https://doi.org/10.1016/j.nucmedbio.2012.08.004.Suche in Google Scholar PubMed PubMed Central
60. Wei, W., Rosenkrans, Z. T., Liu, J., Huang, G., Luo, Q. Y., Cai, W. ImmunoPET: concept, design, and applications. Chem. Rev. 2020, 120, 3787–3851, https://doi.org/10.1021/acs.chemrev.9b00738.Suche in Google Scholar PubMed PubMed Central
61. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Physiol. 2021, 9, 639290, https://doi.org/10.3389/fphy.2021.639290.Suche in Google Scholar
62. Vosjan, M. J., Perk, L. R., Visser, G. W., Budde, M., Jurek, P., Kiefer, G. E., Van Dongen, G. A. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nucl. Protocols. 2010, 5, 739–743, https://doi.org/10.1038/nprot.2010.13.Suche in Google Scholar
63. Meijs, W. E., Herscheid, J. D., Haisma, H. J., Wijbrandts, R., van Langevelde, F., Van Leuffen, P. J., Mooy, R., Pinedo, H. M. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl. Radiat. Isot. 1994, 45, 1143–1147, https://doi.org/10.1016/0969-8043(94)90029-9.Suche in Google Scholar
64. Holland, J. P., Sheh, Y., Lewis, J. S. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 2009, 36, 729–739, https://doi.org/10.1016/j.nucmedbio.2009.05.007.Suche in Google Scholar PubMed PubMed Central
65. Tang, Y., Li, S., Yang, Y., Chen, W., Wei, H., Wang, G., Yang, J., Liao, J., Luo, S., Liu, N. A simple and convenient method for production of 89Zr with high purity. Appl. Radiat. Isot. 2016, 118, 326–330, https://doi.org/10.1016/j.apradiso.2016.09.024.Suche in Google Scholar PubMed
66. Link, J. M., Krohn, K. A., O’Hara, M. J. A simple thick target for production of 89Zr using an 11 MeV cyclotron. Appl. Radiat. Isot. 2017, 122, 211–214, https://doi.org/10.1016/j.apradiso.2017.01.037.Suche in Google Scholar PubMed PubMed Central
67. Uddin, M. S., Hagiwara, M., Baba, M., Tarkanyi, F., Ditroi, F. Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl. Radiat. Isot. 2005, 63, 367–374, https://doi.org/10.1016/j.apradiso.2005.04.006.Suche in Google Scholar PubMed
68. Omara, H. M., Hassan, K. F., Kandil, S. A., Hegazy, F. E., Saleh, Z. A. Proton induced reactions on 89Y with particular reference to the production of the medically interesting radionuclide 89Zr. Radiochim. Acta 2009, 97, 467–471, https://doi.org/10.1524/ract.2009.1645.Suche in Google Scholar
69. Khandaker, M. U., Kim, K., Lee, M. W., Kim, K. S., Kim, G., Otuka, N. Investigations of 89Y(p,x)86,88,89gZr, 86m+ g,87g,87m,88gY, 85gSr, and 84gRb nuclear processes up to 42 MeV. Nucl. Instrum. Methods B 2012, 271, 72–81, https://doi.org/10.1016/j.nimb.2011.11.009.Suche in Google Scholar
70. Rösch, F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013, 76, 24–30.10.1007/978-3-642-27994-2_1Suche in Google Scholar PubMed
71. Sadeghi, M., Kakavand, T., Rajabifar, S., Mokhtari, L., Rahimi, N. A. Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nukleonika 2009, 54, 25–28.Suche in Google Scholar
72. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266, https://doi.org/10.1007/s10967-019-06797-y.Suche in Google Scholar
73. Ermolaev, S. V., Zhuikov, B. L., Kokhanyuk, V. M., Matushko, V. L., Srivastava, S. C. Cross sections and production yields of 117mSn and other radionuclides generated in natural and enriched antimony with protons up to 145 MeV. Radiochem. Acta 2020, 108, 327–351, https://doi.org/10.1515/ract-2019-3158.Suche in Google Scholar
74. Srivastava, S. C. A bridge not too far: personalized medicine with the use of theragnostic radiopharmaceuticals. J. Postgrad. Med. Educ. Res. 2013, 47, 31–46, https://doi.org/10.5005/jp-journals-10028-1054.Suche in Google Scholar
75. Srivastava, S. C. The role of electron-emitting radiopharmaceuticals in the palliative treatment of metastatic bone pain and for radiosynovectomy: applications of conversion electron emitter Tin-117m. Braz. Arch. Biol. Technol. 2007, 50, 49–62, https://doi.org/10.1590/s1516-89132007000600007.Suche in Google Scholar
76. Alonso, J. R. Medical applications of Nuclear Physics and Heavy-Ion Beams (No. LBNL-46036); Lawrence Berkeley National Lab: Berkeley, CA (United States), 2000.Suche in Google Scholar
77. Qaim, S. M. Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 2015, 305, 233–245, https://doi.org/10.1007/s10967-014-3923-2.Suche in Google Scholar
78. Mirzadeh, S., Knapp, F. F.Jr, Alexander, C. W., Mausner, L. F. Evaluation of neutron inelastic scattering for radioisotope production. Appl. Radiat. Isot. 1997, 48, 441–446, https://doi.org/10.1016/s0969-8043(96)00284-9.Suche in Google Scholar
79. Takacs, S., Takács, M. P., Hermanne, A., Tárkányi, F., Rebeles, R. A. Cross sections of deuteron-induced reactions on natSb up to 50 MeV. J. Nucl. Ins. Meth. B. 2012, 278, 93–105, https://doi.org/10.1016/j.nimb.2012.02.007.Suche in Google Scholar
80. Qaim, S. M., Döhler, H. Production of carrier-free 117mSn. Int. J. Appl. Radiat. Isot. 1984, 35, 645–650, https://doi.org/10.1016/0020-708x(84)90110-8.Suche in Google Scholar
81. Montgometry, D. M., Porile, N. T. Reactions of 116Cd with intermediate energy 3He and 4He ions. Nucl. Phys. 1969, 130, 65–76, https://doi.org/10.1016/0375-9474(69)90960-9.Suche in Google Scholar
82. Qaim, S. M., Mushtaq, A., Uhl, M. Isomeric cross-section ratio for the formation of 73 m,gSe in various nuclear processes. Phys. Rev. 1988, C38, 645, https://doi.org/10.1103/physrevc.38.645.Suche in Google Scholar PubMed
83. Sudár, S., Qaim, S. M. Isomeric cross-section ratio for the formation of 58m,gCo in neutron, proton, deuteron, and alpha-particle induced reactions in the energy region up to 25 MeV. Phys. Rev. C 1996, 53, 2885.10.1103/PhysRevC.53.2885Suche in Google Scholar PubMed
84. Qaim, S. M., Sudár, S., Fessler, A. Influence of reaction channel on the isomeric cross-section ratio. Radiochem. Acta 2005, 93, 503–506, https://doi.org/10.1524/ract.2005.93.9-10.503.Suche in Google Scholar
85. Qaim, S. M., Spahn, I., Scholten, B., Neumaier, B. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 2016, 104, 601–624, https://doi.org/10.1515/ract-2015-2566.Suche in Google Scholar
86. Ditrói, F., Takács, S., Haba, H., Komori, Y., Aikawa, M., Szűcs, Z., Saito, M. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn. Nucl. Instrum. Methods Phys. 2016, 385, 1–8.10.1016/j.nimb.2016.08.016Suche in Google Scholar
87. Rivard, M. J. A directional 103Pd brachytherapy device: dosimetric characterization and practical aspects for clinical use. Brachytherapy 2017, 16, 421–432, https://doi.org/10.1016/j.brachy.2016.11.011.Suche in Google Scholar PubMed PubMed Central
88. Aizman, A., Finger, P. T., Shabto, U., Szechter, A., Berson, A. Palladium 103 (103Pd) plaque radiation therapy for circumscribed choroidal hemangioma with retinal detachment. Arch. Ophthalmol. 2004, 122, 1652–1656, https://doi.org/10.1001/archopht.122.11.1652.Suche in Google Scholar PubMed
89. Jalilian, A. R., Beiki, D., Hassanzadeh-Rad, A., Eftekhari, A., Geramifar, P., Eftekhari, M. Production and clinical applications of radiopharmaceuticals and medical radioisotopes in Iran. Semin. Nucl. Med. 2016, 46, 340–358, https://doi.org/10.1053/j.semnuclmed.2016.01.006.Suche in Google Scholar PubMed
90. Moustapha, M. E., Ehrhardt, G. J., Smith, C. J., Szajek, L. P., Eckelman, W. C., Jurisson, S. S. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl. Med. Biol. 2006, 33, 81–89, https://doi.org/10.1016/j.nucmedbio.2005.09.006.Suche in Google Scholar PubMed
91. Bonardi, M. L., Groppi, F., Manenti, S., Persico, E., Gini, L. Production study of high specific activity NCA Re-186g by proton and deuteron cyclotron irradiation. Appl. Radiat. Isot. 2010, 68, 1595–1601, https://doi.org/10.1016/j.apradiso.2010.03.014.Suche in Google Scholar PubMed
92. Richards, V. N., Rath, N., Lapi, S. E. Production and separation of 186gRe from proton bombardment of 186W. Nucl. Med. Biol. 2015, 42, 530–535, https://doi.org/10.1016/j.nucmedbio.2015.03.001.Suche in Google Scholar PubMed
93. Ishioka, N. S., Watanabe, S., Osa, A., Koizumi, M., Matsuoka, H., Sekine, T. gy. Excitation functions of rhenium isotopes on the natW(d,xn) reactions and production of no-carrier-added 186Re. J. Nucl. Sci. Technol. 2002, 39, 1334–1337, https://doi.org/10.1080/00223131.2002.10875351.Suche in Google Scholar
94. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509, https://doi.org/10.1007/s10967-018-6238-x.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences