Startseite Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes

  • Alan L. Nichols EMAIL logo
Veröffentlicht/Copyright: 18. Mai 2022

Abstract

Recommended half-lives and specific well-defined emission energies and absolute emission probabilities are important input parameters that should be well-defined to assist in ensuring the diagnostic and therapeutic efficacy of individual radionuclides when applied in the field of nuclear medicine. Bearing in mind the nature of these requirements, approximately one hundred radionuclides have been considered and re-assessed as to whether their decay data are either adequately quantified, or require further in-depth measurements to improve their existing status and merit full re-evaluations of their decay schemes. The primary aim of such a review is to provide sufficient information on the existing and future requirements for such atomic and nuclear data.


Corresponding author: Alan L. Nichols, Department of Physics, University of Surrey, Guildford, GU2 7XH, UK; and Manipal Academy of Higher Education, Manipal, Karnataka 576104, India, E-mail:

Acknowledgements

Thanks are extended towards Roberto Capote Noy (Nuclear Data Section, International Atomic Energy Agency, Vienna, Austria), Filip G. Kondev (Physics Division, Argonne National Laboratory, Lemont, Illinois, USA) and Syed M. Qaim (Institut für Neurowissenschaften und Medizin, Nuklearchemie, Forschungszentrum Jülich GmbH, Jülich, Germany) for their guidance in defining the overall content of this review. Auger-electron and X-ray decay data constitute two important features of the atomic-decay data described, and recent studies undertaken by Tibor Kibédi and co-workers (ANU, Canberra, Australia) in this area are gratefully acknowledged. This review would not have been so painless to undertake without the ready availability of various compiled and evaluated databases of nuclear structure and decay data (AME2020, ENSDF, XUNDL and DDEP, and related user-friendly software such as NuDat, Java-NDS and LiveChart of Nuclides). These databases and inspection facilities have been maintained and improved on an international basis for many years ‒ such commitment of effort on the part of individual decay-data evaluators and software programmers with the support of their research institutes is highly appreciated and gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar

2. Nichols, A. L. Radioactive decay data: powerful aids in medical diagnosis and therapy, analytical science and other applications. Radiochim. Acta 2012, 100, 615–634; https://doi.org/10.1524/ract.2012.1959.Suche in Google Scholar

3. Nichols, A. L., Qaim, S. M., Capote Noy, R. Summary report of technical meeting on intermediate-term nuclear data needs for medical applications: cross sections and decay data. In IAEA Headquarters, 22 – 26 August 2011, IAEA Report INDC(NDS)-0596, September 2011. IAEA: Vienna, Austria. www-nds.iaea.org/publications/indc/indc-nds-0596.pdf.Suche in Google Scholar

4. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Suche in Google Scholar PubMed

5. Radioisotopes in Medicine. World Nuclear Association, Tower House: London, UK, 2021. world-nuclear.org/Information-Library/Non-power-nuclear-applications/Radioisotopes-Research/Radioisotopes-in-Medicine.aspx.Suche in Google Scholar

6. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189–196; https://doi.org/10.1524/ract.2001.89.4-5.189.Suche in Google Scholar

7. Qaim, S. M. Nuclear data relevant to the production and application of diagnostic radionuclides. Radiochim. Acta 2001, 89, 223–232; https://doi.org/10.1524/ract.2001.89.4-5.223.Suche in Google Scholar

8. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302; https://doi.org/10.1524/ract.2001.89.4-5.297.Suche in Google Scholar

9. Qaim, S. M. Use of cyclotrons in medicine. Radiat. Phys. Chem. 2004, 71, 917–926; https://doi.org/10.1016/j.radphyschem.2004.04.124.Suche in Google Scholar

10. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625; https://doi.org/10.1524/ract.2011.1870.Suche in Google Scholar

11. Qaim, S. M. Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 2015, 305, 233–245; https://doi.org/10.1007/s10967-014-3923-2.Suche in Google Scholar

12. Evaluated Nuclear Structure Data File (ENSDF). Under the custodianship of the US National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York, USA; developed and maintained by the International Network of Nuclear Structure and Decay Data Evaluators (NSDD): www-nds.iaea.org/nsdd/. Available online at: https://www.nndc.bnl.gov/ensdf.Suche in Google Scholar

13. LiveChart of Nuclides. IAEA Decay-Data Retrieval Code; IAEA: Vienna, Austria. Available online at: www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.Suche in Google Scholar

14. IAEA Medical Portal: Data for Medical Applications ‒ Reference Data for Charged-Particle Monitor Reactions and Medical Radioisotope Production. IAEA, Vienna, Austria. Available online at: www-nds.iaea.org/relnsd/vcharthtml/MEDVChart.html.Suche in Google Scholar

15. NuDat Decay-Data Retrieval Code. Brookhaven National Laboratory, Upton, New York, USA. www.nndc.bnl.gov/nudat.Suche in Google Scholar

16. Tuli, J. K. Nuclear Wallet Cards; National Nuclear Data Center, Brookhaven National Laboratory: Upton, New York, USA, 2011. Available online at: www.nndc.bnl.gov/wallet/wallet11.pdf.Suche in Google Scholar

17. XUNDL (eXperimental Unevaluated Nuclear Data List). Brookhaven National Laboratory, Upton, New York, USA. Available online at: www.nndc.bnl.gov/ensdf/ensdf/xundl.jsp.Suche in Google Scholar

18. Kondev, F. G., Wang, M., Huang, W. J., Naimi, S., Audi, G. The NUBASE2020 evaluation of nuclear physics properties. Chin. Phys. 2021, C45, 030001; https://doi.org/10.1088/1674-1137/abddae.Suche in Google Scholar

19. Wang, M., Huang, W. J., Kondev, F. G., Audi, G., Naimi, S. The AME 2020 atomic mass evaluation (II), tables, graphs and references. Chin. Phys. 2021, C45, 030003; https://doi.org/10.1088/1674-1137/abddaf.Suche in Google Scholar

20. Kellett, M. A., Bersillon, O. The Decay Data Evaluation Project (DDEP) and the JEFF-3.3 radioactive decay data library: combining international collaborative efforts on evaluated decay data. EPJ Web Conf. 2017, 146, 02009; Table of radionuclides. Volumes 1 to 8, Monographie BIPM-5, Decay Data Evaluation Project. www.lnhb.fr/nuclear-data/nuclear-data-table; https://doi.org/10.1051/epjconf/201714602009.Suche in Google Scholar

21. MIRD Pamphlets: Prepared and Approved by the Committee on Medical Internal Radiation Dose of the Society of Nuclear Medicine and Molecular Imaging (SNMMI). Available online at: www.snmmi.org/MIRD.Suche in Google Scholar

22. ENSDF Atomic and Nuclear Decay Data in the Medical Internal Radiation Dose (MIRD) Format. Brookhaven National Laboratory, Upton, New York, USA. www.nndc.bnl.gov/nudat3/mird/.Suche in Google Scholar

23. Lee, B. Q., Kibédi, T., Stuchbery, A. E., Robertson, K. A. Atomic radiations in the decay of medical radioisotopes – a physics perspective. Comput. Math. Methods Med. 2012, 2012, article ID 651475; https://doi.org/10.1155/2012/651475.Suche in Google Scholar PubMed PubMed Central

24. Bingham, D., Gardin, I., Hoyes, K. P. The problem of Auger emitters for radiological protection. Radiat. Protect. Dosim. 2000, 92, 219–228; https://doi.org/10.1093/oxfordjournals.rpd.a033273.Suche in Google Scholar

25. Rezende, E. A., Correia, A. R., Iwahara, A., da Silva, C. J., Tauhata, L., Poledna, R., da Silva, R. L., de Oliveira, E. M., de Oliveira, A. E. Radioactivity measurements of 177Lu, 111In and 123I by different absolute methods. Appl. Radiat. Isot. 2012, 70, 2081–2086; https://doi.org/10.1016/j.apradiso.2012.02.067.Suche in Google Scholar PubMed

26. Dias, M. S., Brancaccio, F., Toledo, F., Koskinas, M. F. Disintegration rate, gamma-ray emission probabilities and metastable half-life measurements of 67Ga. Appl. Radiat. Isot. 2014, 87, 126–131; https://doi.org/10.1016/j.apradiso.2013.11.001.Suche in Google Scholar PubMed

27. Koskinas, M. F., Gishitomi, K. C., Brito, A. B., Yamazaki, I. M., Dias, M. S. Disintegration rate and gamma-ray emission probability per decay measurement of 123I. Appl. Radiat. Isot. 2012, 70, 2091–2096; https://doi.org/10.1016/j.apradiso.2012.02.078.Suche in Google Scholar PubMed

28. Moody, K. J., Gharibyan, N., Shaughnessy, D. A., Grant, P. M., Gostic, J. M., Cerjan, C. J., Yeamans, C. B., Despotopulos, J. D., Faye, S. A. Nuclear spectrometry of 9.6 h 196Aum2 and the reaction of 197Au with fast neutrons. J. Phys. G Nucl. Part. Phys. 2020, 47, 045116; https://doi.org/10.1088/1361-6471/ab67e9.Suche in Google Scholar

29. Méot, V., Aupiais, J., Morel, P., Gosselin, G., Gobet, F., Scheurer, J. N., Tarisien, M. Half-life of the first excited state of 201Hg. Phys. Rev. 2007, C75, 064306.10.1103/PhysRevC.75.064306Suche in Google Scholar

30. Han, Jubong, Lee, K. B., Park, T. S., Lee, J. M., Oh, P. J., Lee, S. H., Kang, Y. S., Ahn, J. K. 18F half-life measurement using a high-purity germanium detector. Appl. Radiat. Isot. 2012, 70, 2581–2585; https://doi.org/10.1016/j.apradiso.2012.07.015.Suche in Google Scholar PubMed

31. Kang, Y. S., Ahn, J. K., Kim, S. H., Byun, J. I., Han, J. B., Lee, K. B. 18F half-life measurement using 2-γ coincidence method. Nucl. Instrum. Methods Phys. Res. 2015, A801, 7–10; https://doi.org/10.1016/j.nima.2015.08.025.Suche in Google Scholar

32. Cvetinović, A., Likar, A., Lipoglavšek, M., Mihelič, A., Petrovič, T., Vesić, J., Vodenik, B. Precise measurement of the half-life of 61Cu. Appl. Radiat. Isot. 2015, 104, 160–166; https://doi.org/10.1016/j.apradiso.2015.07.005.Suche in Google Scholar PubMed

33. Gyürky, Gy., Halász, Z., Kiss, G. G., Szücs, T., Fülöp, Zs. Half-life measurement of 65Ga with γ spectroscopy. Appl. Radiat. Isot. 2019, 148, 87–90. Also includes half-life measurement of 61Cu.10.1016/j.apradiso.2019.03.021Suche in Google Scholar PubMed

34. Červenák, J., Lebeda, O. New cross-section data for proton-induced reactions on natTi and natCu with special regard to the beam monitoring. Nucl. Instrum. Methods Phys. Res. 2020, B480, 78–97.10.1016/j.nimb.2020.08.006Suche in Google Scholar

35. Bleuel, D. L., Bernstein, L. A., Marsh, R. A., Morrell, J. T., Rusnak, B., Voyles, A. S. Precision measurement of relative γ-ray intensities from the decay of 61Cu. Appl. Radiat. Isot. 2021, 170, 109625; https://doi.org/10.1016/j.apradiso.2021.109625.Suche in Google Scholar PubMed

36. Nelson, N., Ellison, P., Nickles, R., McCutchan, E., Sonzogni, A., Smith, S., Greene, J., Carpenter, M., Zhu, S., Lister, C., Moran, K. High-precision gamma-ray spectroscopy of 61Cu, an emerging medical isotope used in positron emission tomography. In Poster Presentation at 2017 Fall meeting of the APS Division of Nuclear Physics, 25–28 October 2017, Pittsburgh, Pennsylvania, USA. http://meetings.aps.org/link/BAPS.2017.DNP.EA.180.Suche in Google Scholar

37. Luca, A., Sahagia, M., Antohe, A. Measurements of 64Cu and 68Ga half-lives and γ-ray emission intensities. Appl. Radiat. Isot. 2012, 70, 1876–1880; https://doi.org/10.1016/j.apradiso.2012.02.030.Suche in Google Scholar PubMed

38. Bé, M.-M., Cassette, P., Lépy, M.-C., Amiot, M.-N., Kossert, K., Nähle, O. J., Ott, O., Wanke, C., Dryák, P., Ratel, G., Sahagia, M., Luca, A., Antohe, A., Johansson, L., Keightley, J., Pearce, A. Standardization, decay data measurements and evaluation of 64Cu. Appl. Radiat. Isot. 2012, 70, 1894–1899.10.1016/j.apradiso.2012.02.056Suche in Google Scholar PubMed

39. Pibida, L., Zimmerman, B., Bergeron, D. E., Fitzgerald, R., Cessna, J. T., King, L. Determination of photon emission probability for the main gamma ray and half-life measurements of 64Cu. Appl. Radiat. Isot. 2017, 129, 6–12; https://doi.org/10.1016/j.apradiso.2017.07.001.Suche in Google Scholar PubMed PubMed Central

40. Abel, E. P., Clause, H. K., Fonslet, J., Nickles, R. J., Severin, G. W. Half-lives of 132La and 135La. Phys. Rev. 2018, C97, 034312. Also includes half-life measurement of 64Cu.10.1103/PhysRevC.97.034312Suche in Google Scholar

41. Qaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., Coenen, H. H. Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 2007, 95, 67–73; https://doi.org/10.1524/ract.2007.95.2.67.Suche in Google Scholar

42. Yamazaki, I. M., Koskinas, M. F., Moreira, D. S., Takeda, M. N., Dias, M. S. Disintegration rate and gamma-ray emission probability per decay measurement of Cu-64. Appl. Radiat. Isot. 2018, 134, 312–315; https://doi.org/10.1016/j.apradiso.2017.09.007.Suche in Google Scholar PubMed

43. Bergeron, D. E., Cessna, J. T., Zimmerman, B. E. Two determinations of the Ge-68 half-life. Appl. Radiat. Isot. 2018, 134, 416–420; https://doi.org/10.1016/j.apradiso.2017.10.038.Suche in Google Scholar PubMed PubMed Central

44. García-Toraño, E., Medina, V. P., Romero, E., Roteta, M. Measurement of the half-life of 68Ga. Appl. Radiat. Isot. 2014, 87, 122–125.10.1016/j.apradiso.2013.11.082Suche in Google Scholar PubMed

45. Akkoyun, S., Bayram, T., Dulger, F., Đapo, H., Boztosun, I. Energy level and half-life determinations from photonuclear reaction on Ga target. Int. J. Mod. Phys. 2016, E25, 1650045. https://doi.org/10.1142/s0218301316500452.Suche in Google Scholar

46. Koskinas, M. F., Lacerda, F. W., Matos, I. T., Nascimento, T. S., Yamazaki, I. M., Takeda, M. N., Dias, M. S. Determination of gamma-ray emission probabilities per decay of Ga-68. Appl. Radiat. Isot. 2014, 87, 118–121; https://doi.org/10.1016/j.apradiso.2013.11.003.Suche in Google Scholar PubMed

47. Pibida, L., Fitzgerald, R., Unterweger, M., Hammond, M. M., Golas, D. Measurements of the 82Sr half-life. Appl. Radiat. Isot. 2009, 67, 636–640; https://doi.org/10.1016/j.apradiso.2008.11.017.Suche in Google Scholar PubMed

48. Gross, C. J., Rykaczewski, K. P., Stracener, D. W., Wolińska-Cichocka, M., Varner, R. L., Miller, D., Jost, C. U., Karny, M., Korgul, A., Liu, S., Madurga, M. Measuring the absolute decay probability of 82Sr by ion implantation. Phys. Rev. 2012, C85, 024319.10.1103/PhysRevC.85.024319Suche in Google Scholar

49. Nino, M. N., McCutchan, E. A., Smith, S. V., Lister, C. J., Greene, J. P., Carpenter, M. P., Muench, L., Sonzogni, A. A., Zhu, S. High-precision γ-ray spectroscopy of the cardiac PET imaging isotope 82Rb and its impact on dosimetry. Phys. Rev. 2016, C93, 024301.10.1103/PhysRevC.93.024301Suche in Google Scholar

50. Gula, A. C., McCutchan, E. A., Lister, C. J., Greene, J. P., Zhu, S., Ellison, P. A., Nickles, R. J., Carpenter, M. P., Smith, S. V., Sonzogni, A. A. State-of-the-art γ-ray assay of 86Y for medical imaging. Phys. Rev. 2020, C102, 034316.10.1103/PhysRevC.102.034316Suche in Google Scholar

51. Uddin, M. S., Qaim, S. M., Scholten, B., Basunia, M. S., Bernstein, L. A., Spahn, I., Neumaier, B. Positron emission intensity in the decay of 86gY for use in dosimetry studies. Molecules 2022, 27, 768; https://doi.org/10.3390/molecules27030768.Suche in Google Scholar PubMed PubMed Central

52. Kuhn, S., Spahn, I., Scholten, B., Coenen, H. H. Positron and γ-ray intensities in the decay of 45Ti. Radiochim. Acta 2015, 103, 403–409; https://doi.org/10.1515/ract-2014-0006.Suche in Google Scholar

53. Li, Y., Shen, S., Huang, W., Shi, S., Gu, J., Liu, J., Xu, H. Low-spin states of 76Se excited in 76Br(β+ + EC)76Se decay. Int. J. Mod. Phys. 2004, E13, 933–947; https://doi.org/10.1142/s0218301304002600.Suche in Google Scholar

54. Moran, K. A Precise Spectroscopic Investigation of the 76Br Decay for PET Imaging Applications. PhD dissertation, Department of Physics and Applied Physics, University of Massachusetts Lowell, USA, 2018.Suche in Google Scholar

55. Inoyatov, A. Kh., Ryšavý, M., Kovalík, A., Filosofov, D. V., Zhdanov, V. S., Yushkevich, Yu. V. Improved energies for the 5.2-keV M1 and 42.0-keV M2 nuclear transitions in 83Rb. Eur. Phys. J. 2014, A50, article no. 59.10.1140/epja/i2014-14059-0Suche in Google Scholar

56. García-Toraño, E., Peyrés, V., Roteta, M., Mejuto, M., Sánchez-Cabezudo, A., Romero, E. Standardisation and half-life of 89Zr. Appl. Radiat. Isot. 2018, 134, 421–425.10.1016/j.apradiso.2017.10.033Suche in Google Scholar PubMed

57. Fenwick, A. J., Collins, S. M., Evans, W. D., Ferreira, K. M., Paisey, S. J., Robinson, A. P., Marshall, C. Absolute standardisation and determination of the half-life and gamma emission intensities of 89Zr. Appl. Radiat. Isot. 2020, 166, 109294.10.1016/j.apradiso.2020.109294Suche in Google Scholar PubMed

58. Fransen, C., Pietralla, N., Ammar, Z., Bandyopadhyay, D., Boukharouba, N., von Brentano, P., Dewald, A., Gableske, J., Gade, A., Jolie, J., Kneissl, U., Lesher, S. R., Lisetskiy, A. F., McEllistrem, M. T., Merrick, M., Pitz, H. H., Warr, N., Werner, V., Yates, S. W. Comprehensive studies of low-spin collective excitations in 94Mo. Phys. Rev. 2003, C67, 024307.10.1103/PhysRevC.67.024307Suche in Google Scholar

59. Garrett, P. E., Bangay, J., Varela, A. D., Ball, G. C., Cross, D. S., Demand, G. A., Finlay, P., Garnsworthy, A. B., Green, K. L., Hackman, G., Hannant, C. D., Jigmeddorj, B., Jolie, J., Kulp, W. D., Leach, K. G., Orce, J. N., Phillips, A. A., Radich, A. J., Rand, E. T., Schumaker, M. A., Svensson, C. E., Sumithrarachchi, C., Triambak, S., Warr, N., Wong, J., Wood, J. L., Yates, S. W. Detailed spectroscopy of 110Cd: evidence for weak mixing and the emergence of γ-soft behaviour. Phys. Rev. 2012, C86, 044304.10.1103/PhysRevC.86.044304Suche in Google Scholar

60. Jigmeddorj, B., Garrett, P. E., Varela, A. D., Ball, G. C., Bangay, J., Cross, D. S., Demand, G. A., Garnsworthy, A. B., Green, K. L., Hackman, G., Kulp, W. D., Leach, K. G., Orce, J. N., Rand, E. T., Sumithrarachchi, C., Svensson, C. E., Triambak, S., Wong, J., Wood, J. L., Yates, S. W. Conversion electron study of 110Cd: evidence of new E0 branches. Eur. Phys. J. 2016, A52, article no. 36.10.1140/epja/i2016-16036-ySuche in Google Scholar

61. Vanhoy, J. R., Coleman, R. T., Crandell, K. A., Hicks, S. F., Sklaney, B. A., Walbran, M. M., Warr, N. V., Jolie, J., Corminboeuf, F., Genilloud, L., Kern, J., Schenker, J.-L., Garrett, P. E. Structure of 120Te from the 118Sn(α,2nγ) reaction and 120I decay. Phys. Rev. 2003, C68, 034315.10.1103/PhysRevC.68.034315Suche in Google Scholar

62. Hohn, A., Coenen, H. H., Qaim, S. M. Positron emission intensity in the decay of 120gI. Radiochim. Acta 2000, 88, 139–141.10.1524/ract.2000.88.3-4.139Suche in Google Scholar

63. Luca, A., Sahagia, M., Ioan, M.-R., Antohe, A., Savu, B. L. Experimental determination of some nuclear decay data in the decays of 177Lu, 186Re and 124I. Appl. Radiat. Isot. 2016, 109, 146–150.10.1016/j.apradiso.2015.11.072Suche in Google Scholar PubMed

64. Pibida, L., Bergeron, D. E., Zimmerman, B., Fitzgerald, R., Cessna, J. T., King, L. Determination of the half-life and the absolute photon emission intensities for the main gamma-ray energies of 124I. Appl. Radiat. Isot. 2021, 167, 109455.10.1016/j.apradiso.2020.109455Suche in Google Scholar PubMed

65. Adam, J., Dobeš, J., Honusek, M., Kalinnikov, V. G., Mrázek, J., Pronskikh, V. S., Čaloun, P., Lebedev, N. A., Stegailov, V. I., Tsoupko-Sitnikov, V. M. Properties of 152Gd collective states. Eur. Phys. J. 2003, A18, 605–626.10.1140/epja/i2002-10167-8Suche in Google Scholar

66. Beller, J. D. Systematische Untersuchung exotischer Zerfallskanäle der Scherenmode in Gadoliniumisotopen. MSc dissertation, Institut für Kernphysik, Technische Universität Darmstadt, Germany, 2014.Suche in Google Scholar

67. Krane, K. S. Cross sections and isomer ratios in the Rb(n,γ) and Sr(n,γ) reactions. Eur. Phys. J. 2021, A57, 19.10.1140/epja/s10050-020-00299-2Suche in Google Scholar

68. Dryák, P., Šolc, J. Measurement of the branching ratio related to the internal pair production of Y-90. Appl. Radiat. Isot. 2020, 156, 108942.10.1016/j.apradiso.2019.108942Suche in Google Scholar PubMed

69. Pibida, L., Zimmerman, B. E., King, L., Fitzgerald, R., Bergeron, D. E., Napoli, E., Cessna, J. T. Determination of the internal pair production branching ratio of 90Y. Appl. Radiat. Isot. 2020, 156, 108943.10.1016/j.apradiso.2019.108943Suche in Google Scholar PubMed

70. Riffaud, J., Cassette, P., Lacour, D., Lourenço, V., Tartès, I., Kellett, M. A., Corbel, M., Lépy, M.-C., Domergue, C., Destouches, C., Carcreff, H., Vigneau, O. Measurement of absolute K X-ray emission intensities in the decay of 103mRh. Appl. Radiat. Isot. 2018, 134, 399–405.10.1016/j.apradiso.2017.10.003Suche in Google Scholar PubMed

71. Riffaud, J., Lépy, M.-C., Cassette, P., Corbel, M., Kellett, M. A., Lourenço, V. Measurement of the absolute gamma-ray emission intensities from the decay of 103Pd. Appl. Radiat. Isot. 2021, 167, 109298.10.1016/j.apradiso.2020.109298Suche in Google Scholar PubMed

72. Krane, K. S. The decays of 109,111Pd and 111Ag following neutron capture by Pd. Appl. Radiat. Isot. 2015, 105, 278–289.10.1016/j.apradiso.2015.08.018Suche in Google Scholar PubMed

73. Tee, B. P. E., Stuchbery, A. E., Vos, M., Dowie, J. T. H., Lee, B. Q., Alotiby, M., Greguric, I., Kibédi, T. High-resolution conversion electron spectroscopy of the 125I electron-capture decay. Phys. Rev. 2019, C100, 034313.10.1103/PhysRevC.100.034313Suche in Google Scholar

74. Lépy, M.-C., Brondeau, L., Bobin, C., Lourenço, V., Thiam, C., Bé, M.-M. Determination of X- and gamma-ray emission intensities in the decay of 131I. Appl. Radiat. Isot. 2016, 109, 154–159.10.1016/j.apradiso.2015.11.091Suche in Google Scholar PubMed

75. Talip, Z., Juget, F., Ulrich, J., Nedjadi, Y., Buchillier, T., Durán, M. T., Bochud, F., Bailat, C., van der Meulen, N. P. Determination of the gamma and X-ray emission intensities of erbium-169. Appl. Radiat. Isot. 2021, 176, 109823.10.1016/j.apradiso.2021.109823Suche in Google Scholar PubMed

76. Inoyatov, A. Kh., Kovalík, A., Filosofov, D. V., Ryšavý, M., Perevoschchikov, L. L., Gurov, Yu. B. First direct high-precision energy determination for the 8.4- and 20.7-keV nuclear transitions in 169Tm. Eur. Phys. J. 2015, A51, article no. 65.10.1140/epja/i2015-15065-4Suche in Google Scholar

77. Durán, M. T., Juget, F., Nedjadi, Y., Bochud, F., Talip, Z., van der Meulen, N. P., Köster, U., Duchemin, C., Stora, T., Bailat, C. Ytterbium-175 half-life determination. Appl. Radiat. Isot. 2021, 176, 109893.10.1016/j.apradiso.2021.109893Suche in Google Scholar PubMed

78. Dryák, P., Sochorová, J., Šolc, J., Auerbach, P. Activity standardization, photon emission probabilities and half-life measurements of 177Lu. Appl. Radiat. Isot. 2016, 109, 160–163.10.1016/j.apradiso.2015.11.059Suche in Google Scholar PubMed

79. Kossert, K., Nähle, O. J., Ott, O., Dersch, R. Activity determination and nuclear decay data of 177Lu. Appl. Radiat. Isot. 2012, 70, 2215–2221.10.1016/j.apradiso.2012.02.104Suche in Google Scholar PubMed

80. Deepa, S., Sai, K. V., Gowrishankar, R., Rao, D., Venkataramaniah, K. Precision electron-gamma spectroscopic measurements in the decay of 177Lu. Appl. Radiat. Isot. 2011, 69, 869–874.10.1016/j.apradiso.2011.02.012Suche in Google Scholar PubMed

81. Bhardwaj, R., van der Meer, A., Das, S. K., de Bruin, M., Gascon, J., Wolterbeek, H. T., Denkova, A. G., Serra-Crespo, P. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay aftereffects. Nat. Sci. Rep. 2017, 7, 44242; https://doi.org/10.1038/srep44242.Suche in Google Scholar PubMed PubMed Central

82. Kondev, F. G., Ahmad, I., Carpenter, M. P., Greene, J. P., Janssens, R. V. F., Lauritsen, T., Seweryniak, D., Zhu, S., Lalkovski, S. P., Chowdhury, P. Gamma-ray emission probabilities in the decay of 177mLu. Appl. Radiat. Isot. 2012, 70, 1867–1870.10.1016/j.apradiso.2012.02.029Suche in Google Scholar PubMed

83. Zhernosekov, K. P., Filosofov, D. V., Qaim, S. M., Rösch, F. A 140Nd/140Pr radionuclide generator based on physico-chemical transitions in 140Pr complexes after electron capture decay of 140Nd-DOTA. Radiochim. Acta 2007, 95, 319–327.10.1524/ract.2007.95.6.319Suche in Google Scholar

84. Pommé, S., Marouli, M., Suliman, G., Dikmen, H., Van Ammel, R., Jobbágy, V., Dirican, A., Stroh, H., Paepen, J., Bruchertseifer, F., Apostolidis, C., Morgenstern, A. Measurement of the 225Ac half-life. Appl. Radiat. Isot. 2012, 70, 2608–2614.10.1016/j.apradiso.2012.07.014Suche in Google Scholar PubMed

85. Suliman, G., Pommé, S., Marouli, M., Van Ammel, R., Stroh, H., Jobbágy, V., Paepen, J., Dirican, A., Bruchertseifer, F., Apostolidis, C., Morgenstern, A. Half-lives of 221Fr, 217At, 213Bi, 213Po and 209Pb from the 225Ac decay series. Appl. Radiat. Isot. 2013, 77, 32–37.10.1016/j.apradiso.2013.02.008Suche in Google Scholar PubMed

86. Marouli, M., Suliman, G., Pommé, S., Van Ammel, R., Jobbágy, V., Stroh, H., Dikmen, H., Paepen, J., Dirican, A., Bruchertseifer, F., Apostolidis, C., Morgenstern, A. Decay data measurements on 213Bi using recoil atoms. Appl. Radiat. Isot. 2013, 74, 123–127.10.1016/j.apradiso.2012.12.005Suche in Google Scholar PubMed

87. Collins, S. M., Pommé, S., Jerome, S. M., Ferreira, K. M., Regan, P. H., Pearce, A. K. The half-life of 227Th by direct and indirect measurements. Appl. Radiat. Isot. 2015, 104, 203–211.10.1016/j.apradiso.2015.07.001Suche in Google Scholar PubMed

88. Kossert, K., Bokeloh, K., Dersch, R., Nähle, O. Activity determination of 227Ac and 223Ra by means of liquid scintillation counting and determination of nuclear decay data. Appl. Radiat. Isot. 2015, 95, 143–152.10.1016/j.apradiso.2014.10.005Suche in Google Scholar PubMed

89. Collins, S. M., Pearce, A. K., Ferreira, K. M., Fenwick, A. J., Regan, P. H., Keightley, J. D. Direct measurement of the half-life of 223Ra. Appl. Radiat. Isot. 2015, 99, 46–53.10.1016/j.apradiso.2015.02.003Suche in Google Scholar PubMed

90. Bergeron, D. E., Fitzgerald, R. Two determinations of the 223Ra half-life. Appl. Radiat. Isot. 2015, 102, 74–80.10.1016/j.apradiso.2015.05.003Suche in Google Scholar PubMed

91. Pibida, L., Zimmerman, B., Fitzgerald, R., King, L., Cessna, J. T., Bergeron, D. E. Determination of photon emission probabilities for the main gamma rays of 223Ra in equilibrium with its progeny. Appl. Radiat. Isot. 2015, 101, 15–19.10.1016/j.apradiso.2015.03.011Suche in Google Scholar PubMed

92. Collins, S. M., Pearce, A. K., Regan, P. H., Keightley, J. D. Precise measurements of the absolute γ-ray emission probabilities of 223Ra and decay progeny in equilibrium. Appl. Radiat. Isot. 2015, 102, 15–28.10.1016/j.apradiso.2015.04.008Suche in Google Scholar PubMed

93. Marouli, M., Lutter, G., Pommé, S., Van Ammel, R., Hult, M., Pierre, S., Dryák, P., Carconi, P., Fazio, A., Bruchertseifer, F., Morgenstern, A. Measurement of absolute γ-ray emission probabilities in the decay of 227Ac in equilibrium with its progeny. Appl. Radiat. Isot. 2019, 144, 34–46.10.1016/j.apradiso.2018.08.023Suche in Google Scholar PubMed

94. Chen, J., Kondev, F. G., Ahmad, I., Carpenter, M. P., Greene, J. P., Janssens, R. V. F., Zhu, S., Ehst, D., Makarashvili, V., Rotsch, D., Smith, N. A. Precise absolute γ-ray and β–-decay branching intensities in the decay of 6729Cu. Phys. Rev. 2015, C92, 044330.Suche in Google Scholar

95. Domingo, T., Starosta, K., Chester, A., Williams, J. A precise measurement of the 117mSn half-life. Appl. Radiat. Isot. 2017, 119, 101–104.10.1016/j.apradiso.2016.11.010Suche in Google Scholar PubMed

96. Bobin, C., Bouchard, J., Chisté, V., Collins, S. M., Dryák, P., Fenwick, A., Keightley, J., Lépy, M.-C., Lourenço, V., Robinson, A. P., Sochorová, J., Šolc, J., Thiam, C. Activity measurements and determination of nuclear decay data of 166Ho in the MRTDosimetry project. Appl. Radiat. Isot. 2019, 153, 108826.10.1016/j.apradiso.2019.108826Suche in Google Scholar PubMed

97. Yamazaki, I. M., Koskinas, M. F., Moreira, D. S., Semmler, R., Brancaccio, F., Dias, M. S. Primary standardization and determination of gamma-ray emission intensities of Ho-166. Appl. Radiat. Isot. 2020, 164, 109237.10.1016/j.apradiso.2020.109237Suche in Google Scholar PubMed

98. Dorsett, S. F., Krane, K. S. Neutron capture cross sections of 194Hg and the decays of 195Hg. Appl. Radiat. Isot. 2015, 96, 83–90.10.1016/j.apradiso.2014.11.004Suche in Google Scholar PubMed

99. Walther, M., Preusche, S., Bartel, S., Wunderlich, G., Freudenberg, R., Steinbach, J., Pietzsch, H. J. Theranostic mercury: 197(m)Hg with high specific activity for imaging and therapy. Appl. Radiat. Isot. 2015, 97, 177–181.10.1016/j.apradiso.2015.01.001Suche in Google Scholar PubMed

100. Lebeda, O., Červenák, J. Revised cross sections for formation of theranostic 197m,gHg in proton- and deuteron-induced reactions on 197Au. Nucl. Instrum. Methods Phys. Res. 2020, B478, 85–91.10.1016/j.nimb.2020.05.014Suche in Google Scholar

101. Lebeda, O., Kondev, F. G., Červenák, J. Branching ratio and γ-ray emission probabilities in the decay of Jπ = 13/2+ isomer in 197Hg. Nucl. Instrum. Methods Phys. Res. 2020, A959, 163481.10.1016/j.nima.2020.163481Suche in Google Scholar

102. Freudenberg, R., Apolle, R., Walther, M., Hartmann, H., Kotzerke, J. Molecular imaging using the theranostic agent 197(m)Hg: phantom measurements and Monte-Carlo simulations. EJNMMI Phys. 2018, 5, 15; https://doi.org/10.1186/s40658-018-0216-9.Suche in Google Scholar PubMed PubMed Central

103. Randhawa, P., Olson, A. P., Chen, S., Gower-Fry, K. L., Hoehr, C., Engle, J. W., Ramogida, C. F., Radchenko, V. Meitner-Auger electron emitters for targeted radionuclide therapy: mercury-197m/g and antimony-119. Curr. Rad. 2021, 14, 394–419; https://doi.org/10.2174/1874471014999210111201630.Suche in Google Scholar

104. Bergeron, D. E., Collins, S. M., Pibida, L., Cessna, J. T., Fitzgerald, R., Zimmerman, B. E., Ivanov, P., Keightley, J. D., Napoli, E. Ra-224 activity, half-life and 241-keV gamma-ray absolute emission intensity: a NIST-NPL bilateral comparison. Appl. Radiat. Isot. 2021, 170, 109572.10.1016/j.apradiso.2020.109572Suche in Google Scholar

105. Pommé, S., Altzitzoglou, T., Van Ammel, R., Suliman, G., Marouli, M., Jobbágy, V., Paepen, J., Stroh, H., Apostolidis, C., Abbas, K., Morgenstern, A. Measurement of the 230U half-life. Appl. Radiat. Isot. 2012, 70, 1900–1906.10.1016/j.apradiso.2012.02.053Suche in Google Scholar

106. Pommé, S., Suliman, G., Marouli, M., Van Ammel, R., Jobbágy, V., Paepen, J., Stroh, H., Apostolidis, C., Abbas, K., Morgenstern, A. Measurement of the 226Th and 222Ra half-lives. Appl. Radiat. Isot. 2012, 70, 1913–1918.10.1016/j.apradiso.2012.02.117Suche in Google Scholar

107. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509.10.1007/s10967-018-6238-xSuche in Google Scholar

108. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266.10.1007/s10967-019-06797-ySuche in Google Scholar

109. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222–2226.Suche in Google Scholar

110. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; https://doi.org/10.3390/ph10020056.Suche in Google Scholar

111. Hardy, J. C., Carraz, L. C., Jonson, B., Hansen, P. G. The essential decay of pandemonium: a demonstration of errors in complex beta-decay schemes. Phys. Lett. 1977, 71B, 307–310.10.1016/0370-2693(77)90223-4Suche in Google Scholar

112. Rubio, B., Gelletly, W., Nácher, E., Algora, A., Taín, J. L., Pérez, A., Caballero, L. Beta decay studies with the total absorption technique: past, present and future. J. Phys. G Nucl. Part. Phys. 2005, 31, S1477–S1483.10.1088/0954-3899/31/10/017Suche in Google Scholar

113. Karny, M., Rykaczewski, K. P., Fijałkowska, A., Rasco, B. C., Wolińska-Cichocka, M., Grzywacz, R. K., Goetz, K. C., Miller, D., Zganjar, E. F. Modular total absorption spectrometer. Nucl. Instrum. Methods Phys. Res. 2016, A836, 83–90.10.1016/j.nima.2016.08.046Suche in Google Scholar

114. Algora, A., Taín, J. L., Rubio, B., Fallot, M., Gelletly, W. Beta-decay studies for applied and basic nuclear physics. Eur. Phys. J. 2021, A57, 85.10.1140/epja/s10050-020-00316-4Suche in Google Scholar

115. Kovalík, A., Gorozhankin, V. M., Novgorodov, A. F., Mahmoud, M. A., Coursol, N., Yakushev, E. A., Tsupko-Sitnikov, V. V. The electron spectrum from the atomic de-excitation of 13154Xe. J. Electron Spectrosc. Relat. Phenom. 1998, 95, 231–254.10.1016/S0368-2048(98)00215-1Suche in Google Scholar

116. Kovalík, A., Novgorodov, A. F., Yakushev, E. A., Gorozhankin, V. M., Petev, P., Mahmoud, M. A. The KLL Auger spectrum of 10345Rh from the EC decay of 10346Pd. In Proc. 50th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, St. Petersburg, Russia, 2000, 176.Suche in Google Scholar

117. Schönfeld, E., Janβen, H. Evaluation of atomic shell data. Nucl. Instrum. Methods Phys. Res. 1996, A369, 527–533.10.1016/S0168-9002(96)80044-1Suche in Google Scholar

118. Schönfeld, E. Calculation of fractional electron capture probabilities. Appl. Radiat. Isot. 1998, 49, 1353–1357.10.1016/S0969-8043(97)10073-2Suche in Google Scholar

119. Schönfeld, E., Janβen, H. Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes. Appl. Radiat. Isot. 2000, 52, 595–600.10.1016/S0969-8043(99)00216-XSuche in Google Scholar

120. Lee, B. Q., Nikjoo, H., Ekman, J., Jönsson, P., Stuchbery, A. E., Kibédi, T. A stochastic cascade model for Auger-electron emitting radionuclides. Int. J. Radiat. Biol. 2016, 92, 641–653; https://doi.org/10.3109/09553002.2016.1153810.Suche in Google Scholar PubMed

121. Tee, B. P. E., Kibédi, T., Lee, B. Q., Vos, M., du Rietz, R., Stuchbery, A. E. Development of a new database for Auger-electron and X-ray spectra. In Proc. Heavy Ion Accelerator Symposium (HIAS2019), 9–13 September 2019; Mitchell, A. J., Pavetich, S., Koll, D., Eds.; Canberra, Australia, EPJ Web of Conferences, 2020, 232, 01006; https://doi.org/10.1051/epjconf/202023201006.Suche in Google Scholar

122. Band, I. M., Trzhaskovskaya, M. B., Nestor, C. W.Jr., Tikkanen, P. O., Raman, S. Dirac–Fock internal conversion coefficients. At. Data Nucl. Data Tables 2002, 81, 1–334.10.1006/adnd.2002.0884Suche in Google Scholar

123. Perkins, S. T., Cullen, D. E., Chen, M. H., Hubbell, J. H., Rathkopf, J., Scofield, J. Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100; Lawrence Livermore National Laboratory report UCRL-50400, 1991, 30.10.2172/10121422Suche in Google Scholar

124. Cullen, D. E., Perkins, S. T., Seltzer, S. M. Photon and electron databases and their use in radiation transport calculations. Appl. Radiat. Isot. 1993, 44, 1343–1347.10.1016/0969-8043(93)90084-NSuche in Google Scholar

125. Lee, B. Q., Kibédi, T., Stuchbery, A. E., Robertson, K. A., Kondev, F. G. A model to realize the potential of Auger electrons for radiotherapy. In Proc. Heavy Ion Accelerator Symposium (HIAS2013), 8–12 April 2013; Simenel C., Evers, M., Kibédi, T., Huy Luong, D., Reed, M., Srncik, M., Wallner, A., Eds.; Canberra, Australia: EPJ Web of Conferences, 2013, 63, 01002; https://doi.org/10.1051/epjconf/20136301002.Suche in Google Scholar

126. Tee, B. P. E., Kibédi, T., Lee, B. Q., Stuchbery, A. E. BrIccEmisDB Database and Computational Tool to Evaluate Atomic Relaxation Radiations; Department of Nuclear Physics and Accelerator Applications, Australian National University (ANU): Acton, Canberra, Australia. Paper in preparation (2022) − to be submitted for publication to At. Data Nucl. Data Tables.Suche in Google Scholar

Received: 2022-01-06
Accepted: 2022-04-10
Published Online: 2022-05-18
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0004/pdf
Button zum nach oben scrollen