Startseite Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region

  • Arnab Sarkar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. April 2022

Abstract

An artificial neural network (ANN) algorithm was developed to predict isotopic composition of five Pu isotopes (238Pu, 239Pu, 240Pu, 241Pu, and 242Pu) of high burn-up Pu samples. The study was carried out using the most complex but informative gamma energy region of Pu gamma spectra, 90–106 keV. This region has remained futile, due to the overlapping nature of the gamma emission lines and X-rays emitted by U, Pu, and Np. A backpropagation neural network algorithm based ANN with error minimization using the steepest gradient method was built with the help of normalized gamma spectra for ∼800 samples. The paper discusses the optimization of hidden neuron number and the layer design for best prediction. With the exception of 242Pu, the prediction accuracy and precision of the proposed technique was found to be ∼3% for all other isotopes of Pu.


Corresponding author: Arnab Sarkar, Fuel Chemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India; and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India, E-mail: ,

Funding source: Department of Atomic Energy, India

Award Identifier / Grant number: Project R&D Sector

Acknowledgments

The author is thankful to Dr. P.G. Jaison for his valuable suggestion during manuscript preparation. The author gratefully acknowledges Dr. S. Kannan, Head, Fuel Chemistry Division, B.A.R.C. for his constant support and encouragement.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Department of Atomic Energy, India, Project R&D Sector.

  3. Conflict of interest statement: The author declare no conflicts of interest regarding this article.

References

1. Sarkar, A., Singh, M., Bhusan, K. S., Shah, R. V., Jagdishkumar, S., Paul, S., Jaison, P. G. How Long One Should Count Plutonium (Pu) Samples for Isotopic Analysis by Gamma Spectroscopy? BARC Reports. BARC/2020/E/003, 2020. https://inis.iaea.org/search/search.aspx?orig_q=RN:51095928.Suche in Google Scholar

2. Aggarwal, S. K., Duggal, R. K., Rao, R., Jain, H. C. Comparative study of Pu-239, Pu-240 and Pu-242 spikes for determining plutonium concentration by isotope dilution-thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1986, 71, 221; https://doi.org/10.1016/0168-1176(86)80032-5.Suche in Google Scholar

3. Sasi Bhushan, K., Shah, R., Jagadish Kumar, S., Goswami, P., Paul, S., Sarkar, A., Rao, R., Jaison, P. G. Isotopic Composition Analysis in the Chemical Quality Control of Nuclear Materials. BARC Reports. BARC/2020/I/011, 2020.Suche in Google Scholar

4. Sarkar, A., Paul, S., Aggarwal, S. K., Tomar, B. S. Determination of Pu Isotopic Composition and 241Am by High Resolution Gamma Spectrometry on Solid Samples. BARC Reports. BARC/2011/E/018, 2011. https://inis.iaea.org/collection/NCLCollectionStore/_Public/42/107/42107468.pdf?r=1.Suche in Google Scholar

5. Paul, S., Sarkar, A., Alamelu, D., Shah, R. V., Aggarwal, S. K. Isotope dilution gamma spectrometry for Pu using low energy photons. Radiochim. Acta 2012, 100, 291; https://doi.org/10.1524/ract.2012.1919.Suche in Google Scholar

6. Hsue, S. T., Sampson, T. E., Parker, J. L., Johnson, S. S., Bowersox, D. F. Plutonium Isotopic Composition by Gamma-Ray Spectroscopy. LANL Technical Report. LA-8603-MS, 1980; https://doi.org/10.2172/6742725.Suche in Google Scholar

7. Morel, J., Bickel, M., Hill, C., Verbruggen, A. Results of the international Pu-2000 exercise for plutonium isotopic composition measurements. Appl. Radiat. Isot. 2004, 60, 607; https://doi.org/10.1016/j.apradiso.2003.11.085.Suche in Google Scholar

8. Nguyen, C. T. Verification of the 239Pu content, isotopic composition and age of plutonium in Pu-Be neutron sources by gamma-spectrometry. Nucl. Instrum. Methods Phys. Res. B. 2006, 251, 227; https://doi.org/10.1016/j.nimb.2006.06.004.Suche in Google Scholar

9. Ottmar, H., Eberle, E. Determination of plutonium isotopic composition by gamma spectrometry: results from interlaboratory comparison measurements organized by ESARDA. In 1st Ann. ESARDA Symp. on Safeguards and nuclear materials management; ESARDA: Brussels, C.C.R. Ispra, Italy, 1979.Suche in Google Scholar

10. Patra, S., Agarwal, C., Chaudhury, S., Nathaniel, T. N., Gathibandhe, M., Goswami, A. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having High americium content. Appl. Radiat. Isot. 2013, 78, 139; https://doi.org/10.1016/j.apradiso.2013.04.007.Suche in Google Scholar

11. Sampson, T. E., Hsue, S.-T., Parker, J. L., Johnson, S. S., Bowersox, D. F. The determination of plutonium isotopic composition by gamma-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. 1982, 193, 177; https://doi.org/10.1016/0029-554x(82)90693-0.Suche in Google Scholar

12. Buckley, W. M., Wang, T. F., Friensehner, A., Kreek, S. A., Lanier, R. G., Parker, W. E., Ruhter, W., Twomey, T., Martinez, D., Keyser, R., Sangsingkeow, P. Full Range MGA Plutonium Isotopic Analysis Using Single Ge Detector, Annual Meeting of the Institute of Nuclear Materials Management. Technical report. UCRL-JC--137275, 2000. https://www.osti.gov/biblio/790401-full-range-mga-plutonium-isotopic-analysis-using-single-ge-detector.Suche in Google Scholar

13. Camp, D., Eckels, D., Gunnink, R., Prindle, A., Ruhter, W. Nondestructive assay instrumentation for a Savannah river plant upgrade project. IEEE Trans. Nucl. Sci. 1985, 32, 976; https://doi.org/10.1109/tns.1985.4336980.Suche in Google Scholar

14. Dragnev, T. Intrinsically calibrated gamma and x-ray measurements of plutonium. Appl. Radiat. Isot. 1993, 44, 613; https://doi.org/10.1016/0969-8043(93)90178-d.Suche in Google Scholar

15. Dragnev, T., Schärf, K. Non-destructive gamma spectrometry measurement of 239Pu/240Pu and Pu/240Pu ratios. Int. J. Appl. Radiat. Isot. 1975, 26, 125; https://doi.org/10.1016/0020-708x(75)90150-7.Suche in Google Scholar

16. Gunnink, R. Gamma Spectrometric Methods for Measuring Plutonium. Report No. UCRL-80464; CONF-780522-5, 1978. https://www.osti.gov/servlets/purl/6816816.Suche in Google Scholar

17. Gunnink, R. A Simulation Study of Plutonium Gamma Ray Groupings for Isotopic Ratio Determinations. Report Number. UCRL-51605, 1974. https://doi.org/10.2172/4262278.Suche in Google Scholar

18. Gunnink, R. Status of Plutonium Isotopic Measurements by Gamma Ray Spectrometry. Report Number. UCRL-76418, 1975. https://www.osti.gov/biblio/6816816.Suche in Google Scholar

19. Gunnink, R., Prindle, A., Asakura, Y., Masui, J., Ishiguro, N., Kawasaki, A., Kataoka, S. Evaluation of TASTEX Task H: Measurement of Plutonium Isotopic Abundantces by Gamma-Ray Spectrometry. LLNL report. UCRL-52950, 1981.10.2172/5604335Suche in Google Scholar

20. Miko, D., Estep, R. J., Rawool-Sullivan, M. W. An innovative method for extracting isotopic information from low-resolution gamma spectra. Nucl. Instrum. Methods Phys. Res. B. 1999, 422, 433; https://doi.org/10.1016/s0168-9002(98)01112-7.Suche in Google Scholar

21. Nguyen, C. T., Bagi, J., Lakosi, L. Determining Pu isotopic composition and Pu content of PuBe sources by neutron coincidence technique. Nucl. Instrum. Methods Phys. Res. B. 2007, 262, 75; https://doi.org/10.1016/j.nimb.2007.05.005.Suche in Google Scholar

22. Hoover, A. S., Winkler, R., Rabin, M. W., Vo, D. T., Ullom, J. N., Bennett, D. A., Doriese, W. B., Fowler, J. W., Horansky, R. D., Schmidt, D. R., Vale, L. R., Schaffer, K. Determination of plutonium isotopic content by microcalorimeter gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 2013, 60, 681; https://doi.org/10.1109/tns.2013.2249091.Suche in Google Scholar

23. Sarkar, A., Shah, R., Sasibhusan, K., Jagadishkumar, S., Paul, S., Parab, A. R., Alamelu, D., Aggarwal, S. K. Isotopic correlation for 242Pu composition prediction: multivariate regresssion approach. Appl. Radiat. Isot. 2015, 95, 169; https://doi.org/10.1016/j.apradiso.2014.11.001.Suche in Google Scholar PubMed

24. Alamelu, D., Aggarwal, S. K. Isotope correlations for determining the isotopic composition of plutonium. Radiochim. Acta 2001, 89, 131; https://doi.org/10.1524/ract.2001.89.3.131.Suche in Google Scholar

25. Li, T. K., Sampson, T. E., Johnson, S. S. Plutonium Isotopic Measurement for Small Product Samples. Report Number LA-UR-83-1115, 1983; https://doi.org/10.2172/6161469.Suche in Google Scholar

26. Umezawa, H., Suzuki, T., Ichikawa, S.-i. Gamma-ray spectrometric determination of isotopic ratios of plutonium. J. Nucl. Sci. Technol. 1976, 13, 327; https://doi.org/10.1080/18811248.1976.9734032.Suche in Google Scholar

27. Russo, P. A., Hsue, S. T., Sprinkle, J. K.Jr., Johnson, S. S., Asakura, Y., Kondo, I., Masui, J., Shoji, K. In-plant Measurements of Gamma-Ray Transmissions for Precise K-Edge and Passive Assay of Plutonium Concentration and Isotopic Fractions in Product Solutions Final Report on TASTEX Task G. Report No. LA--9440-MS, 79, 1982. https://inis.iaea.org/search/search.aspx?orig_q=RN:14738788.10.2172/6743220Suche in Google Scholar

28. Bubernak, J. Calibration and use of a high-resolution, low-energy photon detector for measuring plutonium isotopic abundances. Anal. Chim. Acta 1978, 96, 279; https://doi.org/10.1016/s0003-2670(01)83663-1.Suche in Google Scholar

29. Tripathi, R., Tomar, B. S., Reddy, A. V. R., Manohar, S. B., Murlidhar, S. Nondestructive Determination of Isotopic Composition of Plutonium by Gamma Ray Spectrometry. BARC report BARC/2002/I/009, 2002.Suche in Google Scholar

30. Gunnink, R., Niday, J. B., Siemens, P. D. System for Plutonium Analysis by Gamma Ray Spectrometry. Part I. Techniques for Analysis of Solutions. Report Number UCRL-51577(Pt.1), 1974; https://doi.org/10.2172/4291806.Suche in Google Scholar

31. Chaudhury, S., Agarwal, C., Patra, S., Goswami, A. Isotopic composition analysis of dilute Pu solutions using 90−105keV region of gamma ray spectra. Appl. Radiat. Isot. 2017, 119, 66; https://doi.org/10.1016/j.apradiso.2016.11.009.Suche in Google Scholar PubMed

32. Reilly, D., Ensslin, N., Smith, H.Jr., Kreiner, S. Passive Nondestructive Assay of Nuclear Materials. Los Alamos, Los Alamos National Laboratory report No. NM 87545, 1991.10.2172/5428834Suche in Google Scholar

33. Gunnink, R., Evans, J. E., Prindle, A. L. Reevaluation of the Gamma-Ray Energies and Absolute Branching Intensities of 237U, 238Pu, 239Pu, 240Pu, 241Pu, and 241Am. Report Number UCRL-52139, 1976; https://doi.org/10.2172/7320853.Suche in Google Scholar

34. Rumelhart, D. E., Hinton, G. E., Williams, R. J. Learning representations by back-propagating errors. Nature 1986, 323, 533; https://doi.org/10.1038/323533a0.Suche in Google Scholar

35. Rene, E. R., López, M. E., Kim, J. H., Park, H. S. Back propagation neural network model for predicting the performance of immobilized cell biofilters handling gas-phase hydrogen sulphide and ammonia. BioMed Res. Int. 2013, 2013, 463401; https://doi.org/10.1155/2013/463401.Suche in Google Scholar PubMed PubMed Central

36. Sapna, S., Tamilarasi, A., Pravin Kumar, M. Backpropagation Learning Algorithm Based on Levenberg Marquardt Algorithm. In Fourth International Workshop on Computer Networks & Communications; CS & IT-CSCP 2012: Coimbatore, India, 2012; pp. 393–398.10.5121/csit.2012.2438Suche in Google Scholar

37. Aydiner, C., Demir, I., Yildiz, E. Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal. J. Membr. Sci. 2005, 248, 53; https://doi.org/10.1016/j.memsci.2004.07.036.Suche in Google Scholar

38. Fu, R.-Q., Xu, T.-W., Pan, Z.-X. Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network. J. Membr. Sci. 2005, 251, 137; https://doi.org/10.1016/j.memsci.2004.11.007.Suche in Google Scholar

39. Karazi, S. M., Moradi, M., Benyounis, K. Y. Statistical and numerical approaches for modeling and optimizing laser micromachining process-review. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, 2019; pp. 1–21.10.1016/B978-0-12-803581-8.11650-9Suche in Google Scholar

40. Sarkar, A., Mao, X., Chan, G. C. Y., Russo, R. E. Laser ablation molecular isotopic spectrometry of water for 1D2/1H1 ratio analysis. Spectrochim. Acta Part B At. Spectrosc. 2013, 88, 46; https://doi.org/10.1016/j.sab.2013.08.002.Suche in Google Scholar

41. Sarkar, A. Uncertainty propagation in Pu isotopic composition calculation by gamma spectrometry: theory versus experiment. Radiochim. Acta 2021, 109, 301; https://doi.org/10.1515/ract-2020-0085.Suche in Google Scholar

42. Wattal, P. K. Back end of Indian nuclear fuel cycle-A road to sustainability. Prog. Nucl. Energy 2017, 101, 133; https://doi.org/10.1016/j.pnucene.2017.03.004.Suche in Google Scholar

Received: 2021-11-24
Accepted: 2022-03-15
Published Online: 2022-04-08
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1129/html
Button zum nach oben scrollen