Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent
-
Pamarthi Amesh
, Asokan Sudha Suneesh
Abstract
The iron oxide surface was modified with succinic acid moiety and the adsorbent obtained, Fe-SUC, was evaluated for the adsorption of U(VI) (Uranium (VI)) from aqueous solution. The Fe-SUC was characterized by FT-IR (Fourier Transform Infrared Spectroscopy), Raman spectroscopy, thermogravimetry, X-ray diffraction, SEM-EDX (Scanning Electron Microscope - Energy-dispersive X-ray Spectroscopy), and particle size analysis. The adsorption behavior of U(VI) on Fe-SUC was studied as a function of pH, contact time, and concentration of U(VI) in the aqueous phase. The adsorption of U(VI) increased with increase in the pH of aqueous phase, and the adsorption saturation occurred at pH = 6. The kinetic data obtained for the adsorption of U(VI) on Fe-SUC were modeled with the pseudo-first-order and pseudo-second-order rate models. Similarly, the U(VI) adsorption isotherm was fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models. The Langmuir adsorption capacity of U(VI) on Fe-SUC was about ∼176 mg g−1. The selectivity of the adsorbent toward U(VI) was evaluated in the presence of several possible interfering ions. The adsorbed U(VI) was recovered by 0.5 M sodium carbonate solution and the spent adsorbent was tested for its reusability.
Acknowledgments
The authors would like to thank Dr. S. Balakrishnan for recording TG curves. The authors also thank to Dr. Manish Chandra for providing scanning electron facility, Mrs D. Annie for XRD, and Mr. G. Jogeswara Rao for particle size analysis.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Arostegui, D. A., Holt, M. Advanced nuclear reactors: technology overview and current issues. In Congressional Research Service Report for Congress; Library of Congress: United States, 2019.Search in Google Scholar
2. Buckthorpe, D. Introduction to Generation IV nuclear reactors. In Structural Materials for Generation IV Nuclear Reactors; Woodhead Publishing: Duxford, 2017.10.1016/B978-0-08-100906-2.00001-XSearch in Google Scholar
3. Sadekin, S., Zaman, S., Mahfuz, M., Sarkar, R. Nuclear power as foundation of a clean energy future: a review. Energy Procedia 2019, 160, 513; https://doi.org/10.1016/j.egypro.2019.02.200.Search in Google Scholar
4. Al Faruque, A. Nuclear Energy Regulation, Risk and the Environment; Routledge: London, 2018.10.4324/9781351240062Search in Google Scholar
5. Esmaeel, S. M. Sorption of U(VI) after carbonate leaching by low cost activated carbon–aluminum ferrisilicate composite. Int. J. Environ. Anal. Chem. 2020, 1, 1–20.10.1080/03067319.2020.1758685Search in Google Scholar
6. Anand Rao, K., Paul, B., Sreenivas, T. Morphological variations during carbonate leaching of U(VI) from Indian Alkaline Host Rocks. Trans. Indian Inst. Met. 2020, 73, 2069–2080.10.1007/s12666-020-01983-zSearch in Google Scholar
7. Kaksonen, A. H., Lakaniemi, A. M., Tuovinen, O. H. Acid and ferric sulfate bioleaching of U(VI) ores: a review. J. Clean. Prod. 2020, 264, 121586.10.1016/j.jclepro.2020.121586Search in Google Scholar
8. Khanramaki, F., Shirani, A. S., Safdari, J., Torkaman, R. Equilibrium and kinetics of U(VI) (VI) extraction from a sulfate leach liquor solution by Alamine 336 using single drop technique. Chem. Eng. Res. Des. 2017, 125, 181; https://doi.org/10.1016/j.cherd.2017.07.026.Search in Google Scholar
9. Mathews, T., Beaugelin-Seiller, K., Garnier-Laplace, J., Gilbin, R., Adam, C., Della-Vedova, C. A probabilistic assessment of the chemical and radiological risks of chronic exposure to U(VI) in freshwater ecosystems. Environ. Sci. Technol. 2009, 43, 6684; https://doi.org/10.1021/es9005288.Search in Google Scholar PubMed
10. Gavrilescu, M., Pavel, L. V., Cretescu, I. Characterization and remediation of soils contaminated with U(VI). J. Hazard. Mater. 2009, 163, 475; https://doi.org/10.1016/j.jhazmat.2008.07.103.Search in Google Scholar PubMed
11. Kausar, A., Bhatti, H. N. Adsorptive removal of U(VI) from wastewater: a review. J. Chem. Soc. Pakistan 2013, 35, 1041.Search in Google Scholar
12. Horton, C. A., White, J. C. Separation of U(VI) by solvent extraction with tri-n-octylphosphine oxide. Direct colorimetric determination with dibenzoylmethane. Anal. Chem. 1958, 30, 1779; https://doi.org/10.1021/ac60143a017.Search in Google Scholar
13. Kumar, J. R., Kim, J. S., Lee, J. Y., Yoon, H. S. A brief review on solvent extraction of U(VI) from acidic solutions. Separ. Purif. Rev. 2011, 40, 77; https://doi.org/10.1080/15422119.2010.549760.Search in Google Scholar
14. Cheng, Y., He, P., Dong, F., Nie, X., Ding, C., Wang, S., Zhang, Y., Liu, H., Zhou, S. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U (VI) from real U(VI) mine water. Chem. Eng. J. 2019, 367, 198; https://doi.org/10.1016/j.cej.2019.02.149.Search in Google Scholar
15. Foster, R. I., Amphlett, J. T., Kim, K. W., Kerry, T., Lee, K., Sharrad, C. A. SOHIO process legacy waste treatment: U(VI) recovery using ion exchange. J. Ind. Eng. Chem. 2020, 81, 144; https://doi.org/10.1016/j.jiec.2019.09.001.Search in Google Scholar
16. Singh, D. K., Hareendran, K. N., Sreenivas, T., Kain, V., Dey, G. K. Development of a phosphate precipitation method for the recovery of U(VI) from lean tenor alkaline leach liquor. Hydrometallurgy 2017, 171, 228; https://doi.org/10.1016/j.hydromet.2017.05.021.Search in Google Scholar
17. Li, P., Zhun, B., Wang, X., Liao, P., Wang, G., Wang, L., Guo, Y., Zhang, W. Highly efficient interception and precipitation of U(VI) (VI) from aqueous solution by iron-electrocoagulation combined with cooperative chelation by organic ligands. Environ. Sci. Technol. 2017, 51, 14368; https://doi.org/10.1021/acs.est.7b05288.Search in Google Scholar PubMed
18. Qian, Y., Yuan, Y., Wang, H., Liu, H., Zhang, J., Shi, S., Guo, Z., Wang, N. Highly efficient U(VI) adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J. Mater. Chem. A. 2018, 48, 24676; https://doi.org/10.1039/c8ta09486a.Search in Google Scholar
19. Amesh, P., Venkatesan, K. A., Suneesh, A. S., Samanta, N. Diethylenetriamine tethered mesoporous silica for the sequestration of U(VI) from aqueous solution and seawater. J. Environ. Chem. Eng. 2020, 8, 103995; https://doi.org/10.1016/j.jece.2020.103995.Search in Google Scholar
20. Amesh, P., Suneesh, A. S., Selvan, B. R., Venkatesan, K. A., Chandra, M. Magnetic assisted separation of U(VI) (VI) from aqueous phase using diethylenetriamine modified high capacity iron oxide adsorbent. J. Environ. Chem. Eng. 2020, 2, 103661; https://doi.org/10.1016/j.jece.2020.103661.Search in Google Scholar
21. Zhang, P., Wang, L., Du, K., Wang, S., Huang, Z., Yuan, L., Li, Z., Wang, H., Zheng, L., Chai, Z., Shi, W. Effective removal of U (VI) and Eu (III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 2020, 369, 122731; https://doi.org/10.1016/j.jhazmat.2020.122731.Search in Google Scholar PubMed
22. Hoyer, M., Zabelt, D., Steudtner, R., Brendler, V., Haseneder, R., Repke, J. U. Influence of speciation during membrane treatment of U(VI) contaminated water. Separ. Purif. Technol. 2014, 132, 413; https://doi.org/10.1016/j.seppur.2014.05.044.Search in Google Scholar
23. Ghasemi Torkabad, M., Keshtkar, A. R., Safdari, S. J. U(VI) membrane separation from binary aqueous solutions of UO22+-K+ and UO22+-Ca2+ by the nanofiltration process. Separ. Sci. Technol. 2017, 52, 1095; https://doi.org/10.1080/01496395.2017.1279182.Search in Google Scholar
24. Zhang, P., Wang, L., Huang, Z., Yu, J., Li, Z., Deng, H., Yin, T., Yuan, L., Gibson, J. K., Mei, L., Zheng, L. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 2020, 13, 15579; https://doi.org/10.1021/acsami.0c00861.Search in Google Scholar PubMed
25. Torkabad, M. G., Keshtkar, A. R., Safdari, S. J. Comparison of polyethersulfone and polyamide nanofiltration membranes for U(VI) removal from aqueous solution. Prog. Nucl. Energy 2017, 94, 93; https://doi.org/10.1016/j.pnucene.2016.10.005.Search in Google Scholar
26. Banala, U. K., Das, N. P., Toleti, S. R. U(VI) sequestration abilities of Bacillus bacterium isolated from an alkaline mining region. J. Hazard. Mater. 2021, 411, 125053; https://doi.org/10.1016/j.jhazmat.2021.125053.Search in Google Scholar PubMed
27. Banala, U. K., Das, N. P., Toleti, S. R. Microbial interactions with U(VI) : towards an effective bioremediation approach. Environ. Technol. Innov. 2020, 21, 101254.10.1016/j.eti.2020.101254Search in Google Scholar
28. Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., Ejiogu, I. K. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J. Toxicol. 2018, 2018, 2568038; https://doi.org/10.1016/j.jhazmat.2021.125053.Search in Google Scholar
29. Yusof, M. Y., Idris, M. I., Mohamed, F., Nor, M. M. Adsorption of radioactive element by clay: a review. In IOP Conference Series: Mater. Sci. Eng., Vol. 758; IOP Publishing, 2020; pp. 012020.10.1088/1757-899X/785/1/012020Search in Google Scholar
30. Guo, H., Li, Y., Wang, H., Zhang, N., Ishag, A., Mei, P., Sun, Y. Carbon materials for extraction of U(VI) from seawater. Chemosphere 2021, 278, 130411; https://doi.org/10.1016/j.chemosphere.2021.130411.Search in Google Scholar PubMed
31. Wang, J., Zhuang, S. Extraction and adsorption of U (VI) from aqueous solution using affinity ligand-based technologies: an overview. Rev. Environ. Sci. Biotechnol. 2019, 3, 437; https://doi.org/10.1007/s11157-019-09507-y.Search in Google Scholar
32. Sarafraz, H., Alahyarizadeh, G., Minuchehr, A., Modaberi, H., Naserbegi, A. Economic and efficient phosphonic functional groups mesoporous silica for U(VI) selective adsorption from aqueous solutions. Sci. Rep. 2019, 9, 1; https://doi.org/10.1038/s41598-019-46090-2.Search in Google Scholar PubMed PubMed Central
33. Zhao, S., Yuan, Y., Yu, Q., Niu, B., Liao, J., Guo, Z., Wang, N. A dual‐surface amidoximated halloysite nanotube for high-efficiency economical U(VI) extraction from seawater. Angew. Chem. 2019, 131, 15121; https://doi.org/10.1002/ange.201908762.Search in Google Scholar
34. Zhang, H., Liu, W., Li, A., Zhang, D., Li, X., Zhai, F., Chen, L., Chen, L., Wang, Y., Wang, S. Three mechanisms in one material: uranium capture by a polyoxometalate–organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. Int. Ed. 2019, 58, 16110; https://doi.org/10.1002/anie.201909718.Search in Google Scholar PubMed
35. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Diwu, J. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 2017, 51, 3911; https://doi.org/10.1021/acs.est.6b06305.Search in Google Scholar PubMed
36. Li, H., Zhai, F., Gui, D., Wang, X., Wu, C., Zhang, D., Dai, X., Deng, H., Su, X., Diwu, J., Lin, Z. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B Environ. 2019, 254, 47; https://doi.org/10.1016/j.apcatb.2019.04.087.Search in Google Scholar
37. Husnain, S. M., Um, W., Chang, Y. S. Magnetite-based adsorbents for sequestration of radionuclides: a review. RSC Adv. 2018, 5, 2521; https://doi.org/10.1039/c7ra12299c.Search in Google Scholar PubMed PubMed Central
38. Tang, N., Liang, J., Niu, C., Wang, H., Luo, Y., Xing, W., Ye, S., Liang, C., Guo, H., Guo, J., Zhang, Y. Amidoxime-based materials for U(VI) recovery and removal. J. Mater. Chem. A 2020, 16, 7588; https://doi.org/10.1039/c9ta14082d.Search in Google Scholar
39. Gupta, N. K., Choudhary, B. C., Gupta, A., Achary, S. N., Sengupta, A. Graphene-based adsorbents for the separation of f-metals from waste solutions: a review. J. Mol. Liq. 2019, 289, 111121; https://doi.org/10.1016/j.molliq.2019.111121.Search in Google Scholar
40. Hamed, M. M., Shahr El-Din, A. M., Abdel-Galil, E. A. Nanocomposite of polyaniline functionalized Tafla: synthesis, characterization, and application as a novel sorbent for selective removal of Fe (III). J. Radioanal. Nucl. Chem. 2019, 322, 663; https://doi.org/10.1007/s10967-019-06733-0.Search in Google Scholar
41. Hamed, M. M., Ahmed, I. M., Holiel, M. Retention behavior of anionic radionuclides using metal hydroxide sludge. Radiochim. Acta 2019, 107, 1161; https://doi.org/10.1515/ract-2019-0010.Search in Google Scholar
42. Singhal, P., Vats, B. G., Pulhani, V. Magnetic nanoparticles for the recovery of U(VI) from sea water: challenges involved from research to development. J. Ind. Eng. Chem. 2020, 90, 17; https://doi.org/10.1016/j.jiec.2020.07.035.Search in Google Scholar
43. Husnain, S. M., Kim, H. J., Um, W., Chang, Y. Y., Chang, Y. S. Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for U(VI) removal. Ind. Eng. Chem. Res. 2017, 35, 9821; https://doi.org/10.1021/acs.iecr.7b01737.Search in Google Scholar
44. Mazarío, E., Stemper, J., Helal, A. S., Mayoral, A., Decorse, P., Losno, R., Lion, C., Ammar, S., Gall, T. L., Hemadi, M. New iron oxide nanoparticles catechol-grafted with bis(amidoxime)s for U(VI) (VI) depletion of aqueous solution. J. Nanosci. Nanotechnol. 2019, 19, 4911; https://doi.org/10.1166/jnn.2019.16804.Search in Google Scholar PubMed
45. Gdula, K., Gładysz-Płaska, A., Cristovao, B., Ferenc, W., Skwarek, E. Amine-functionalized magnetite-silica nanoparticles as effective adsorbent for removal of U(VI) (VI) ions. J. Mol. Liq. 2019, 290, 111217; https://doi.org/10.1016/j.molliq.2019.111217.Search in Google Scholar
46. Zhu, S., Leng, Y., Yan, M., Tuo, X., Yang, J., Almásy, L., Tian, Q., Sun, G., Zou, L., Li, Q. Courtois, J. Bare and polymer coated iron oxide superparamagnetic nanoparticles for effective removal of U (VI) from acidic and neutral aqueous medium. Appl. Surf. Sci. 2018, 447, 381; https://doi.org/10.1016/j.apsusc.2018.04.016.Search in Google Scholar
47. Huang, Y., Zheng, H., Li, H., Zhao, C., Zhao, R., Li, S. Highly selective U(VI) adsorption on 2-phosphonobutane-1, 2,4-tricarboxylic acid-decorated chitosan-coated magnetic silica nanoparticles. Chem. Eng. J. 2020, 388, 124349; https://doi.org/10.1016/j.cej.2020.124349.Search in Google Scholar
48. Amesh, P., Suneesh, A. S., Selvan, B. R., Venkatesan, K. A. Amidic succinic acid moiety anchored silica gel for the extraction of UO22+ from aqueous medium and simulated sea water. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123585; https://doi.org/10.1016/j.colsurfa.2019.123585.Search in Google Scholar
49. Stöber, W., Fink, A., Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62.10.1016/0021-9797(68)90272-5Search in Google Scholar
50. Khan, M. H., Warwick, P., Evans, N. Spectrophotometric determination of U(VI) with arsenazo-III in perchloric acid. Chemosphere 2006, 63, 1165; https://doi.org/10.1016/j.chemosphere.2005.09.060.Search in Google Scholar
51. Amesh, P., Suneesh, A. S., Venkatesan, K. A., Chandra, M., Ravindranath, N. A. High capacity amidic succinic acid functionalized mesoporous silica for the adsorption of U(VI). Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125053; https://doi.org/10.1016/j.colsurfa.2020.125053.Search in Google Scholar
52. Ferreira, N. M., Ferro, M. C., Gaspar, G., Fernandes, A. J., Valente, M. A., Costa, F. M. Laser-induced hematite/magnetite phase transformation. J. Electron. Mater. 2020, 49, 7187; https://doi.org/10.1007/s11664-020-08535-7.Search in Google Scholar
53. Gasparov, L. V., Tanner, D. B., Romero, D. B., Berger, H., Margaritondo, G., Forro, L. Infrared and Raman studies of the Verwey transition in magnetite. Phys. Rev. B. 2000, 62, 7939; https://doi.org/10.1103/physrevb.62.7939.Search in Google Scholar
54. de Faria, D. L., Lópes, F. N. Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117; https://doi.org/10.1016/j.vibspec.2007.07.003.Search in Google Scholar
55. Shim, S. H., Duffy, T. S. Raman spectroscopy of Fe2O3 to 62 GPa. Am. Mineral. 2002, 87, 318; https://doi.org/10.2138/am-2002-2-314.Search in Google Scholar
56. De Faria, D. L., Venâncio Silva, S., De Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 11, 873.10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-BSearch in Google Scholar
57. Chamritski, I., Burns, G. Infrared-and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B 2005, 109, 4965; https://doi.org/10.1021/jp048748h.Search in Google Scholar
58. Quiles, F., Burneau, A. Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib. Spectrosc. 1998, 18, 61; https://doi.org/10.1016/s0924-2031(98)00040-x.Search in Google Scholar
59. Hu, J., Chen, G., Lo, I. M. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528; https://doi.org/10.1016/j.watres.2005.05.051.Search in Google Scholar
60. Li, Y. S., Church, J. S., Woodhead, A. L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012, 324, 1543; https://doi.org/10.1016/j.jmmm.2011.11.065.Search in Google Scholar
61. Lv, B., Xu, Y., Tian, H., Wu, D., Sun, Y. Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. J. Solid State Chem. 2010, 183, 2968; https://doi.org/10.1016/j.jssc.2010.10.001.Search in Google Scholar
62. El-Sayed, A. A., Hamed, M. M., Hmmad, H. A., El-Reefy, S. Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry. Radiochim. Acta 2007, 95, 43; https://doi.org/10.1524/ract.2007.95.1.43.Search in Google Scholar
63. Corbett, J. F. Pseudo first-order kinetics. J. Chem. Educ. 1972, 49, 663; https://doi.org/10.1021/ed049p663.Search in Google Scholar
64. Lagergren, S. K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl. 1898, 24, 1.Search in Google Scholar
65. Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Search in Google Scholar
66. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 9, 1361; https://doi.org/10.1021/ja02242a004.Search in Google Scholar
67. Freundlich, H. Freundlich isotherms. In Colloidal and Capillary Chemistry; Methuen: London, 1926.Search in Google Scholar
68. Temkin, M. J., Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Phys. Chim. Sin. 1940, 12, 217.Search in Google Scholar
69. Hutson, N. D., Yang, R. T. Theoretical basis for the Dubinin-Radushkevitch (DR) adsorption isotherm equation. Adsorption 1997, 3, 189; https://doi.org/10.1007/bf01650130.Search in Google Scholar
70. Reitz, T., Rossberg, A., Barkleit, A., Steudtner, R., Selenska-Pobell, S., Merroun, M. L. Spectroscopic study on uranyl carboxylate complexes formed at the surface layer of Sulfolobus acidocaldarius. Dalton Trans. 2015, 44, 2684; https://doi.org/10.1039/c4dt02555e.Search in Google Scholar PubMed
71. Zhang, S., Yuan, D., Zhang, Q., Wang, Y., Liu, Y., Zhao, J., Chen, B. Highly efficient removal of U(VI) from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent. J. Mater. Chem. A. 2020, 21, 10925; https://doi.org/10.1039/d0ta01633k.Search in Google Scholar
72. Liu, S., Luo, J., Ma, J., Li, J., Li, S., Meng, L., Liu, S. Removal of U(VI) from aqueous solutions using amine-functionalized magnetic platelet large-pore SBA-15. J. Nucl. Sci. Technol. 2021, 58, 29; https://doi.org/10.1080/00223131.2020.1796838.Search in Google Scholar
73. Lingamdinne, L. P., Choi, J. S., Angaru, G. K., Karri, R. R., Yang, J. K., Chang, Y. Y., Koduru, J. R. Magnetic-watermelon rinds biochar for uranium-contaminated water treatment using an electromagnetic semi-batch column with removal mechanistic investigations. Chemosphere 2022, 286, 131776; https://doi.org/10.1016/j.chemosphere.2021.131776.Search in Google Scholar PubMed
74. Sharma, M., Chaudhary, K., Kumari, M., Yadav, P., Sachdev, K., Janu, V. C., Gupta, R. Highly efficient, economic, and recyclable glutathione decorated magnetically separable nanocomposite for U(VI) (VI) adsorption from aqueous solution. Mater. Today Chem. 2020, 18, 100379; https://doi.org/10.1016/j.mtchem.2020.100379.Search in Google Scholar
75. Wang, Z., Wang, Y., Yao, C. Highly efficient removal of U(VI) (VI) from aqueous solution using the polyethyleneimine modified magnetic chitosan. J. Polym. Environ. 2021, 20, 1–2.10.1007/s10924-021-02242-ySearch in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands
- Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution
- Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite
- Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region
- Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent
- Electrochemical reduction of uranium and rhenium in hydrochloric acid system
- A sensitive improved method for analyzing diffusion coefficients of Cs in compacted bentonite with different lengths
- Adsorption behavior of chromium in an aqueous suspension of δ-alumina in absence and in presence of humic substances
- A novel theranostic probe [111In]In-DO3A-NHS-nimotuzumab in glioma xenograft
- Lead-free Sb-based polymer composite for γ-ray shielding purposes
Articles in the same Issue
- Frontmatter
- Original Papers
- Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands
- Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution
- Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite
- Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region
- Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent
- Electrochemical reduction of uranium and rhenium in hydrochloric acid system
- A sensitive improved method for analyzing diffusion coefficients of Cs in compacted bentonite with different lengths
- Adsorption behavior of chromium in an aqueous suspension of δ-alumina in absence and in presence of humic substances
- A novel theranostic probe [111In]In-DO3A-NHS-nimotuzumab in glioma xenograft
- Lead-free Sb-based polymer composite for γ-ray shielding purposes