Startseite Electrochemical reduction of uranium and rhenium in hydrochloric acid system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrochemical reduction of uranium and rhenium in hydrochloric acid system

  • Yingcai Wang EMAIL logo , Qian Liu , Meiyang Quan , Yusheng Yang , Yuhui Liu , Ying Dai , Rong Hua , Zhimin Dong , Zhibin Zhang und Yunhai Liu
Veröffentlicht/Copyright: 8. April 2022

Abstract

The electrochemical reduction of U(VI) and Re(VII) ions on Pt and Mo metals are discussed. The electrochemical behavior of U(VI) and Re(VII) in hydrochloric acid media was investigated using various electrochemical techniques. By analyzing the cyclic voltammogram of U(VI) and Re(VII) recorded on Pt electrode, a series of electrochemical reactions associated with uranium and rhenium were recognized, indicating that U(VI) and Re(VII) undergoes a single-step electron and multistep electron process under experimental conditions, respectively. The reduction of U(VI) and Re(VII) was found to be controlled by charge transfer and diffusion in hydrochloric acid media. The diffusion coefficient of U(VI) and Re(VII)was determined to be 4.22–5.99 × 10−6 cm2 s−1 and 1.50–2.90 × 10−5 cm2 s−1, respectively, and the activation energy for the diffusion are calculated to be 18.12 kJ mol−1 and 14.52 kJ mol−1 by cyclic voltammetry at different temperatures. The reduction process of U(VI) and Re(VII) at hydrochloric acid is further studied by potentiostatic electrolysis. It is feasible to realize the reduction of uranium and rhenium from aqueous solution by electrolysis.


Corresponding author: Yingcai Wang, Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China; School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China, E-mail:

Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809

Award Identifier / Grant number: 330013

Award Identifier / Grant number: 21906018

Award Identifier / Grant number: 21906019

Award Identifier / Grant number: 22076022

Award Identifier / Grant number: 22066003

Award Identifier / Grant number: 2020NRE24

Award Identifier / Grant number: 2020NRE23

Funding source: Educational Department in Jiangxi Province

Award Identifier / Grant number: GJJ180371

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was financially supported by the National Natural Science Foundation of China, State Key Laboratory of Nuclear Resources and Environment (East China University of Technology), Nanchang, 330013, Jiangxi, China (Nos. 21906018, 21906019, 22076022, 22066003, 2020NRE24 and 2020NRE23) and the Fundamental Research funds for the Educational Department in Jiangxi Province (GJJ180371).

  3. Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Benedict, M., Levi, H., Pigford, T. Nuclear chemical engineering. Nucl. Sci. Eng. U.S.A. 1982, 10, 457–459.Suche in Google Scholar

2. Kok, K. D., Ed. Nuclear Engineering Handbook; CRC Press: United States, 2016.10.1201/9781315373829Suche in Google Scholar

3. Choppin, G. R., Khankhasaev, M. K., Plendl, H. S., Eds. Chemical Separations in Nuclear Waste Management: The State of the Art and a Look to the Future; Battelle Pr: United States, 2002.Suche in Google Scholar

4. Madic, C. Actinide separation chemistry in nuclear waste streams, an OECD Nuclear Energy Agency review. In Proceedings of International Conference on Future Nuclear Systems, Yokohama, Japan, 1997.Suche in Google Scholar

5. Lecomte, M., Bonin, B. Le traitement-recyclage ducombustible nucléaire usé: La séparation des actinides, application à la gestiondes déchets, CEA Saclay; Groupe Moniteur: Paris, 2008.Suche in Google Scholar

6. Borland, M., Frank, S. In An Evaluation of Alternate Production Methods for Pu-238 General Purpose Heat Source Pellets; NETS-2009: United States, 2009.Suche in Google Scholar

7. Georgette, S., Picart, S., Bouyer, C., Maurin, J., Bisel, I., Grandjean, S., Deseure, J., Lapicque, F. Study of the plutonium (IV) electrochemical behavior in nitric acid at a platinum electrode. Application to the cathodic reduction of Pu(IV) in a plate electrolyzer. J. Electroanal. Chem 2014, 727, 163; https://doi.org/10.1016/j.jelechem.2014.06.015.Suche in Google Scholar

8. Li, Z., Zhang, Z., Dong, Z., Wu, Y., Zhu, X., Cheng, Z., Liu, Y., Wang, Y., Zheng, Z., Cao, X., Wang, Y., Liu, Y. CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium (VI). J. Solid State Chem. 2021, 303, 122499; https://doi.org/10.1016/j.jssc.2021.122499.Suche in Google Scholar

9. Jiang, T. J., Zhang, X. W., Xie, C., Wu, X.-Y., Luo, C. W., Li, M., Peng, Y. Effective capture of aqueous uranium using a novel magnetic goethite: properties and mechanism. J. Solid State Chem. 2021, 300, 122236; https://doi.org/10.1016/j.jssc.2021.122236.Suche in Google Scholar

10. Barnett, M. O., Jardine, P. M., Brooks, S. C., Selim, H. M. Adsorption and transport of uranium(VI) in subsurface media. Soil Sci. Soc. Am. J. 2000, 64, 908; https://doi.org/10.2136/sssaj2000.643908x.Suche in Google Scholar

11. Waseem, A., Ullah, H., Rauf, M. K., Ahmad, I. Distribution of natural uranium in surface and groundwater resources: a review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2391; https://doi.org/10.1080/10643389.2015.1025642.Suche in Google Scholar

12. Briner, W. The toxicity of depleted uranium. Int. J. Environ. Res. Public Health 2010, 7, 303; https://doi.org/10.3390/ijerph7010303.Suche in Google Scholar PubMed PubMed Central

13. Wang, Y., Dong, X., Liu, Y., Liu, Y., Cao, X., Chen, J., Xu, C. Electrochemical and spectrochemical analysis of U(VI) reduction in nitric acid solutions. J. Electroanal. Chem. 2020, 874, 114482; https://doi.org/10.1016/j.jelechem.2020.114482.Suche in Google Scholar

14. Fattahi, M., Guillaumont, R. Determination of the concentration of U(IV) and U(VI) in anoxic leaching solutions of uranium dioxide. Radiochim. Acta 1993, 61, 155; https://doi.org/10.1524/ract.1993.61.34.155.Suche in Google Scholar

15. Pidchenko, I., Salminen-Paatero, S., Rothe, J., Suksi, J. Study of uranium oxidation states in geological material. J. Environ. Radioact. 2013, 124, 141; https://doi.org/10.1016/j.jenvrad.2013.04.008.Suche in Google Scholar PubMed

16. Çevirim-Papaioannou, N., Yalçıntaş, E., Gaona, X., Dardenne, K., Altmaier, M., Geckeis, H. Redox chemistry of uranium in reducing, dilute to concentrated NaCl solutions. Appl. Geochem. 2018, 98, 286.10.1016/j.apgeochem.2018.07.006Suche in Google Scholar

17. Salomone, V. N., Meichtry, J. M., Zampieri, G., Litter, M. I. New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem. Eng. J. 2015, 261, 27; https://doi.org/10.1016/j.cej.2014.06.001.Suche in Google Scholar

18. Bläuenstein, P. Rhenium in nuclear medicine: general aspects and future goals. New J. Chem. 1990, 14, 405; https://doi.org/10.1007/bf02599426.Suche in Google Scholar

19. Prakash, S., Went, M. J., Blower, P. J. Cyclic and acyclic polyamines as chelators of rhenium-186 and Rhenium-188 for therapeutic use. Nucl. Med. Biol. 1996, 23, 543; https://doi.org/10.1016/0969-8051(96)00038-8.Suche in Google Scholar

20. Blower, P. J., Kettle, A. G., O’Doherty, M. J., Coakley, A. J., Knapp, F. F.Jr. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur. J. Nucl. Med. 2000, 27, 1405; https://doi.org/10.1007/s002590000307.Suche in Google Scholar

21. Maxon, H. R., Schroder, L. E., Washburn, L. C., Thomas, S. R., Samaratunga, R. C., Biniakiewicz, D., Moulton, J. S., Cummings, D., Ehrhardt, G. J., Morris, V. Rhenium-188 (Sn) HEDP for treatment of osseous metastases. J. Nucl. Med. 1998, 39, 659.Suche in Google Scholar

22. Wang, J., Huang, Y., Cheng, X. Status, spatial distribution, and health risk assessment of potentially harmful element from road dust in steel industry city, China. Arab. J. Geosci. 2021, 14, 318; https://doi.org/10.1007/s12517-021-06556-y.Suche in Google Scholar

23. Abisheva, Z. S., Zagorodnyaya, A. N., Bekturganov, N. S. Review of technologies for rhenium recovery from mineral raw materials in Kazakhstan. Hydrometallurgy 2011, 109, 1; https://doi.org/10.1016/j.hydromet.2011.04.014.Suche in Google Scholar

24. Dong, Z., Wen, D., Zhang, M., Xie, K., Hua, R., Zhao, L. Recovery of rhenium(VII) from synthetic leaching solutions of uranium ore using ionic liquid modified cellulose microsphere adsorbents. Hydrometallurgy 2020, 197, 105457; https://doi.org/10.1016/j.hydromet.2020.105457.Suche in Google Scholar

25. Lorens, R. B., Bender, M. L. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim. Cosmochim. Acta 1980, 44, 1265; https://doi.org/10.1016/0016-7037(80)90087-3.Suche in Google Scholar

26. Shen, L., Tesfaye, F., Li, X., Lindberg, D., Taskinen, P. Review of rhenium extraction and recycling technologies from primary and secondary resources. Miner. Eng. 2021, 161, 106719; https://doi.org/10.1016/j.mineng.2020.106719.Suche in Google Scholar

27. Shults, W. D. Applications of controlled-potential coulometry to the determination of plutonium. Talanta 1963, 10, 833; https://doi.org/10.1016/0039-9140(63)80244-1.Suche in Google Scholar

28. Sharma, H. S., Khedekar, N. B., Marathe, S. G., Jain, H. C. Controlled potential coulometric determination of plutonium in mixed (U, Pu) carbide fuels. Nucl. Technol. 1990, 89, 399; https://doi.org/10.13182/nt90-a34378.Suche in Google Scholar

29. Sharma, H. S., Jisha, V., Noronha, D. M., Sharma, M. K., Aggarwal, S. K. Performance Evaluation of Indigenous Controlled Potential Coulometer for the Determination of Uranium and Plutonium; BARC Report: India, 2007.Suche in Google Scholar

30. Sharma, M., Kamat, J., Ambolikar, A., Pillai, J., Aggarwal, S. Coulometry for the Determination of Uranium and Plutonium: Past and Present; BARC: India, 2012.Suche in Google Scholar

31. Sharma, H. S., Manolkar, R. B., Kamat, J. V., Marathe, S. G. Studies on the coulometric determination of uranium and plutonium employing a graphite electrode. Fresenius’ J. Anal. Chem. 1993, 347, 486; https://doi.org/10.1007/bf00324240.Suche in Google Scholar

32. Jagadeeswara Rao, C., Venkatesan, K. A., Nagarajan, K., Srinivasan, T. G., Vasudeva Rao, P. R. Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid. J. Nucl. Mater. 2011, 408, 25; https://doi.org/10.1016/j.jnucmat.2010.10.022.Suche in Google Scholar

33. Jagadeeswara Rao, Ch., Venkatesan, K. A., Nagarajan, K., Srinivasan, T. G. Dissolution of uranium oxides and electrochemical behavior of U (VI) in task specific ionic liquid. Radiochim. Acta 2008, 96, 403; https://doi.org/10.1524/ract.2008.1508.Suche in Google Scholar

34. Joseph, B., Venkatesan, K., Nagarajan, K., Srinivasan, T., Vasudeva Rao, P. Lithium assisted electrochemical reduction of uranium oxide in room temperature ionic liquid. J. Radioanal. Nucl. Chem. 2011, 287, 167; https://doi.org/10.1007/s10967-010-0682-6.Suche in Google Scholar

35. Sengupta, A., Murali, M. S., Mohapatra, P. K. Role of alkyl substituent in room temperature ionic liquid on the electrochemical behavior of uranium ion and its local environment. J. Radioanal. Nucl. Chem. 2013, 298, 209; https://doi.org/10.1007/s10967-012-2334-5.Suche in Google Scholar

36. Harris, W., Kolthoff, I. The polarography of Uranium. III. Polarography in very weakly acid, neutral or basic solution 1. J. Am. Chem. Soc. 1947, 69, 446; https://doi.org/10.1021/ja01194a073.Suche in Google Scholar

37. Kihara, S. Analytical chemical studies on electrode processes by column coulometry: I. Basic studies on the column electrode. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 31; https://doi.org/10.1016/s0022-0728(73)80006-3.Suche in Google Scholar

38. Baker, B. C., Sawyer, D. T. Electrochemical studies of the uranium(VI)-ethylenediaminetetraacetic acid complex. Inorg. Chem. 1970, 9, 197; https://doi.org/10.1021/ic50084a001.Suche in Google Scholar

39. Rajak, S., Ghosh, S. K., Varshney, J., Srivastava, A., Tewari, R., Kain, V. Electrochemical investigation of uranyl species reduction in alkaline oxalate electrolyte and microstructural characterization of deposited nanocrystalline UO2 thin films. J. Electroanal. Chem. 2018, 812, 45; https://doi.org/10.1016/j.jelechem.2018.01.060.Suche in Google Scholar

40. Mishra, S., Sini, K., Rao, C. J., Mallika, C., Mudali, U. K. Electrochemical studies on the reduction of uranyl ions in nitric acid-hydrazine media. J. Electroanal. Chem. 2016, 776, 127; https://doi.org/10.1016/j.jelechem.2016.07.002.Suche in Google Scholar

41. Ghandour, M., Abo-Doma, R., Gomaa, E. The electroreduction (polarographically) of uranyl ion in nitric acid and nitric acid-methanol mixture media. Electrochim. Acta 1982, 27, 159; https://doi.org/10.1016/0013-4686(82)80075-3.Suche in Google Scholar

42. Kim, K. W., Kim, J. D., Aoyagi, H., Toida, Y., Yoshida, Z. Pretreatment of a titanium electrode for reduction of uranium(VI) in nitric acid-hydrazine media. J. Nucl. Sci. Technol. 1993, 30, 554; https://doi.org/10.1080/18811248.1993.9734518.Suche in Google Scholar

43. Sini, K., Mishra, S., Mallika, C., Pandey, N. K., Srinivasan, R., Kamachi Mudali, U., Natarajan, R. Kinetics and optimisation of process parameters for electrochemical generation of uranous ions in nitric acid-hydrazine media. J. Radioanal. Nucl. Chem. 2013, 298, 301; https://doi.org/10.1007/s10967-013-2470-6.Suche in Google Scholar

44. Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., Giorgi, L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim. Acta 2001, 46, 799; https://doi.org/10.1016/s0013-4686(00)00679-4.Suche in Google Scholar

45. Méndez, E., Cerdá, M. a. F., Luna, A. M. C., Zinola, C. F., Kremer, C., Martins, M. a. E. Electrochemical behavior of aqueous acid perrhenate-containing solutions on noble metals: critical review and new experimental evidence. J. Colloid Interface Sci. 2003, 263, 119.10.1016/S0021-9797(03)00165-6Suche in Google Scholar

46. Pieck, C., Marecot, P., Barbier, J. Preparation of PtRe/Al2O3 catalysts by surface redox reactions II. Influence of the acid medium on Re deposition and PtRe interaction. Appl. Catal. A 1996, 143, 283; https://doi.org/10.1016/0926-860x(96)00086-5.Suche in Google Scholar

47. Tang, H., Pesic, B. Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim. Acta 2014, 119, 120; https://doi.org/10.1016/j.electacta.2013.11.148.Suche in Google Scholar

48. Bard, A. J., Faulkner, L. R. Fundamentals and applications: electrochemical methods. Electrochem. Methods 2001, 2, 482.Suche in Google Scholar

49. Ramaley, L., Krause, M. S. Theory of square wave voltammetry. Anal. Chem. 1969, 41, 1362; https://doi.org/10.1021/ac60280a005.Suche in Google Scholar

50. Osteryoung, J. G., Osteryoung, R. A. Square wave voltammetry. Anal. Chem. 1985, 57, 101; https://doi.org/10.1021/ac00279a004.Suche in Google Scholar

51. Méndez, E., Cerdá, M. F., Castro Luna, A. M., Zinola, C. F., Kremer, C., Martins, M. E. Electrochemical behavior of aqueous acid perrhenate-containing solutions on noble metals: critical review and new experimental evidence. J. Colloid Interface Sci. 2003, 263, 119.10.1016/S0021-9797(03)00165-6Suche in Google Scholar

52. Wu, J. K., Shen, X. H., Chen, Q.-D. Electrochemical behavior of the system of uranium(VI) extraction with CMPO-ionic liquid. Acta Phys-Chim Sin. 2013, 29, 1705.10.3866/PKU.WHXB201306043Suche in Google Scholar

53. Mastragostino, M., Saveant, J. M. Disproportionation and ECE mechanisms—II. Reduction of the uranyl cation in perchloric acid. Electrochim. Acta 1968, 13, 751; https://doi.org/10.1016/0013-4686(68)85008-x.Suche in Google Scholar

54. Delahay, P. New Instrumental Methods in Electrochemistry: Theory, Instrumentation, and Application to Analytical and Physical Chemistry; Interscience Publishers: New York, 1954.Suche in Google Scholar

55. Dash, A., Agarwal, R., Mukerjee, S. K. Electrochemical behaviour of uranium and thorium aqueous solutions at different temperatures. J. Radioanal. Nucl. Chem. 2017, 311, 733; https://doi.org/10.1007/s10967-016-5088-7.Suche in Google Scholar

56. Mishra, S., K, S., Rao, C. J., Mallika, C., Mudali, U. K. Electrochemical studies on the reduction of uranyl ions in nitric acid-hydrazine media. J. Electroanal. Chem. 2016, 776, 127; https://doi.org/10.1016/j.jelechem.2016.07.002.Suche in Google Scholar

57. Awakura, Y., Sato, K., Majima, H., Hirono, S. The measurement of the diffusion coefficient of U(VI) in aqueous uranyl sulfate solutions. Metall. Trans. B 1987, 18, 19; https://doi.org/10.1007/bf02658427.Suche in Google Scholar

58. Chotkowski, M., Czerwiński, A. Electrochemical and spectroelectrochemical studies of pertechnetate electroreduction in acidic media. Electrochim. Acta 2012, 76, 165; https://doi.org/10.1016/j.electacta.2012.04.123.Suche in Google Scholar

59. Chotkowski, M., Grdeń, M., Wrzosek, B. Intermediate oxidation states of technetium in alkaline solutions. J. Electroanal. Chem. 2018, 829, 148; https://doi.org/10.1016/j.jelechem.2018.10.003.Suche in Google Scholar

60. Maun, E. K., Davidson, N. Investigations in the chemistry of rhenium. I. Oxidation states IV, V and VII1, 2. J. Am. Chem. Soc. 1950, 72, 2254; https://doi.org/10.1021/ja01161a104.Suche in Google Scholar

61. Crouthamel, C. E. Thiocyanate spectrophotometric determination of technetium. Anal. Chem. 1957, 29, 1756; https://doi.org/10.1021/ac60132a024.Suche in Google Scholar

62. Zhang, X. X., Zhao, Y. Z., Zhou, W. Y. Electrolytic reduction of Re(VII) using a flow type electrolysis cell and its possibility of radiopharmaceuticals application. Nucl. Sci. Tech. 2015, 26, 10308.Suche in Google Scholar

63. Mazzocchin, G. A., Magno, F., Bontempelli, G. Reduction of aqueous rhenate(VII) at a platinum electrode. Inorg. Chim. Acta 1975, 13, 209; https://doi.org/10.1016/s0020-1693(00)90199-3.Suche in Google Scholar

64. Dadachova, E., Smith, S. V., Mirzadeh, S. Electrolytic reduction of carrier-free 188Re. Appl. Radiat. Isot. 1996, 47, 289; https://doi.org/10.1016/0969-8043(95)00301-0.Suche in Google Scholar

65. Hoshi, H., Wei, Y. Z., Kumagai, M., Asakura, T., Morita, Y. Electrolytic reduction of Tc(VII) in nitric acid solution using glassy carbon electrode. J. Radioanal. Nucl. Chem. 2004, 262, 601; https://doi.org/10.1007/s10967-004-0482-y.Suche in Google Scholar

66. Shapiro, E. S., Avaev, V. I., Antoshin, G. N., Ryashentseva, M. A., Minachev, K. M. XPS (X-ray photoelectron spectroscopy) studies of the rhenium state in supported Re catalysts. J. Catal. 1978, 55.Suche in Google Scholar

67. Cimino, A., De Angelis, B., Gazzoli, D., Valigi, M. Photoelectron spectroscopy (XPS) and thermogravimetry (TG) of pure and supported rhenium oxides 1. Pure rhenium compounds. Z. Anorg. Allg. Chem. 1980, 460, 86; https://doi.org/10.1002/zaac.19804600109.Suche in Google Scholar

68. Tysoe, W. T., Zaera, F., Somorjai, G. A. An XPS study of the oxidation and reduction of the rhenium-platinum system under atmospheric conditions. Surf. Sci. 1988, 200, 1; https://doi.org/10.1016/0039-6028(88)90428-1.Suche in Google Scholar

69. Szabó, S., Bakos, I. Electroreduction of rhenium from sulfuric acid solutions of perrhenic acid. J. Electroanal. Chem. 2000, 492, 103.10.1016/S0022-0728(00)00224-2Suche in Google Scholar

70. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solution. NACE 1974, 307, 343.Suche in Google Scholar

71. Bakos, I., Horányi, G., Szabó, S., Rizmayer, E. M. Electrocatalytic reduction of ClO4− ions at an electrodeposited Re layer. J. Electroanal. Chem. 1993, 359, 241; https://doi.org/10.1016/0022-0728(93)80412-b.Suche in Google Scholar

Received: 2021-10-06
Accepted: 2022-02-10
Published Online: 2022-04-08
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1110/html
Button zum nach oben scrollen