Electrochemical reduction of uranium and rhenium in hydrochloric acid system
-
Yingcai Wang
, Qian Liu
Abstract
The electrochemical reduction of U(VI) and Re(VII) ions on Pt and Mo metals are discussed. The electrochemical behavior of U(VI) and Re(VII) in hydrochloric acid media was investigated using various electrochemical techniques. By analyzing the cyclic voltammogram of U(VI) and Re(VII) recorded on Pt electrode, a series of electrochemical reactions associated with uranium and rhenium were recognized, indicating that U(VI) and Re(VII) undergoes a single-step electron and multistep electron process under experimental conditions, respectively. The reduction of U(VI) and Re(VII) was found to be controlled by charge transfer and diffusion in hydrochloric acid media. The diffusion coefficient of U(VI) and Re(VII)was determined to be 4.22–5.99 × 10−6 cm2 s−1 and 1.50–2.90 × 10−5 cm2 s−1, respectively, and the activation energy for the diffusion are calculated to be 18.12 kJ mol−1 and 14.52 kJ mol−1 by cyclic voltammetry at different temperatures. The reduction process of U(VI) and Re(VII) at hydrochloric acid is further studied by potentiostatic electrolysis. It is feasible to realize the reduction of uranium and rhenium from aqueous solution by electrolysis.
Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
Award Identifier / Grant number: 330013
Award Identifier / Grant number: 21906018
Award Identifier / Grant number: 21906019
Award Identifier / Grant number: 22076022
Award Identifier / Grant number: 22066003
Award Identifier / Grant number: 2020NRE24
Award Identifier / Grant number: 2020NRE23
Funding source: Educational Department in Jiangxi Province
Award Identifier / Grant number: GJJ180371
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The work was financially supported by the National Natural Science Foundation of China, State Key Laboratory of Nuclear Resources and Environment (East China University of Technology), Nanchang, 330013, Jiangxi, China (Nos. 21906018, 21906019, 22076022, 22066003, 2020NRE24 and 2020NRE23) and the Fundamental Research funds for the Educational Department in Jiangxi Province (GJJ180371).
-
Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
1. Benedict, M., Levi, H., Pigford, T. Nuclear chemical engineering. Nucl. Sci. Eng. U.S.A. 1982, 10, 457–459.Suche in Google Scholar
2. Kok, K. D., Ed. Nuclear Engineering Handbook; CRC Press: United States, 2016.10.1201/9781315373829Suche in Google Scholar
3. Choppin, G. R., Khankhasaev, M. K., Plendl, H. S., Eds. Chemical Separations in Nuclear Waste Management: The State of the Art and a Look to the Future; Battelle Pr: United States, 2002.Suche in Google Scholar
4. Madic, C. Actinide separation chemistry in nuclear waste streams, an OECD Nuclear Energy Agency review. In Proceedings of International Conference on Future Nuclear Systems, Yokohama, Japan, 1997.Suche in Google Scholar
5. Lecomte, M., Bonin, B. Le traitement-recyclage ducombustible nucléaire usé: La séparation des actinides, application à la gestiondes déchets, CEA Saclay; Groupe Moniteur: Paris, 2008.Suche in Google Scholar
6. Borland, M., Frank, S. In An Evaluation of Alternate Production Methods for Pu-238 General Purpose Heat Source Pellets; NETS-2009: United States, 2009.Suche in Google Scholar
7. Georgette, S., Picart, S., Bouyer, C., Maurin, J., Bisel, I., Grandjean, S., Deseure, J., Lapicque, F. Study of the plutonium (IV) electrochemical behavior in nitric acid at a platinum electrode. Application to the cathodic reduction of Pu(IV) in a plate electrolyzer. J. Electroanal. Chem 2014, 727, 163; https://doi.org/10.1016/j.jelechem.2014.06.015.Suche in Google Scholar
8. Li, Z., Zhang, Z., Dong, Z., Wu, Y., Zhu, X., Cheng, Z., Liu, Y., Wang, Y., Zheng, Z., Cao, X., Wang, Y., Liu, Y. CuS/TiO2 nanotube arrays heterojunction for the photoreduction of uranium (VI). J. Solid State Chem. 2021, 303, 122499; https://doi.org/10.1016/j.jssc.2021.122499.Suche in Google Scholar
9. Jiang, T. J., Zhang, X. W., Xie, C., Wu, X.-Y., Luo, C. W., Li, M., Peng, Y. Effective capture of aqueous uranium using a novel magnetic goethite: properties and mechanism. J. Solid State Chem. 2021, 300, 122236; https://doi.org/10.1016/j.jssc.2021.122236.Suche in Google Scholar
10. Barnett, M. O., Jardine, P. M., Brooks, S. C., Selim, H. M. Adsorption and transport of uranium(VI) in subsurface media. Soil Sci. Soc. Am. J. 2000, 64, 908; https://doi.org/10.2136/sssaj2000.643908x.Suche in Google Scholar
11. Waseem, A., Ullah, H., Rauf, M. K., Ahmad, I. Distribution of natural uranium in surface and groundwater resources: a review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2391; https://doi.org/10.1080/10643389.2015.1025642.Suche in Google Scholar
12. Briner, W. The toxicity of depleted uranium. Int. J. Environ. Res. Public Health 2010, 7, 303; https://doi.org/10.3390/ijerph7010303.Suche in Google Scholar PubMed PubMed Central
13. Wang, Y., Dong, X., Liu, Y., Liu, Y., Cao, X., Chen, J., Xu, C. Electrochemical and spectrochemical analysis of U(VI) reduction in nitric acid solutions. J. Electroanal. Chem. 2020, 874, 114482; https://doi.org/10.1016/j.jelechem.2020.114482.Suche in Google Scholar
14. Fattahi, M., Guillaumont, R. Determination of the concentration of U(IV) and U(VI) in anoxic leaching solutions of uranium dioxide. Radiochim. Acta 1993, 61, 155; https://doi.org/10.1524/ract.1993.61.34.155.Suche in Google Scholar
15. Pidchenko, I., Salminen-Paatero, S., Rothe, J., Suksi, J. Study of uranium oxidation states in geological material. J. Environ. Radioact. 2013, 124, 141; https://doi.org/10.1016/j.jenvrad.2013.04.008.Suche in Google Scholar PubMed
16. Çevirim-Papaioannou, N., Yalçıntaş, E., Gaona, X., Dardenne, K., Altmaier, M., Geckeis, H. Redox chemistry of uranium in reducing, dilute to concentrated NaCl solutions. Appl. Geochem. 2018, 98, 286.10.1016/j.apgeochem.2018.07.006Suche in Google Scholar
17. Salomone, V. N., Meichtry, J. M., Zampieri, G., Litter, M. I. New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem. Eng. J. 2015, 261, 27; https://doi.org/10.1016/j.cej.2014.06.001.Suche in Google Scholar
18. Bläuenstein, P. Rhenium in nuclear medicine: general aspects and future goals. New J. Chem. 1990, 14, 405; https://doi.org/10.1007/bf02599426.Suche in Google Scholar
19. Prakash, S., Went, M. J., Blower, P. J. Cyclic and acyclic polyamines as chelators of rhenium-186 and Rhenium-188 for therapeutic use. Nucl. Med. Biol. 1996, 23, 543; https://doi.org/10.1016/0969-8051(96)00038-8.Suche in Google Scholar
20. Blower, P. J., Kettle, A. G., O’Doherty, M. J., Coakley, A. J., Knapp, F. F.Jr. 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur. J. Nucl. Med. 2000, 27, 1405; https://doi.org/10.1007/s002590000307.Suche in Google Scholar
21. Maxon, H. R., Schroder, L. E., Washburn, L. C., Thomas, S. R., Samaratunga, R. C., Biniakiewicz, D., Moulton, J. S., Cummings, D., Ehrhardt, G. J., Morris, V. Rhenium-188 (Sn) HEDP for treatment of osseous metastases. J. Nucl. Med. 1998, 39, 659.Suche in Google Scholar
22. Wang, J., Huang, Y., Cheng, X. Status, spatial distribution, and health risk assessment of potentially harmful element from road dust in steel industry city, China. Arab. J. Geosci. 2021, 14, 318; https://doi.org/10.1007/s12517-021-06556-y.Suche in Google Scholar
23. Abisheva, Z. S., Zagorodnyaya, A. N., Bekturganov, N. S. Review of technologies for rhenium recovery from mineral raw materials in Kazakhstan. Hydrometallurgy 2011, 109, 1; https://doi.org/10.1016/j.hydromet.2011.04.014.Suche in Google Scholar
24. Dong, Z., Wen, D., Zhang, M., Xie, K., Hua, R., Zhao, L. Recovery of rhenium(VII) from synthetic leaching solutions of uranium ore using ionic liquid modified cellulose microsphere adsorbents. Hydrometallurgy 2020, 197, 105457; https://doi.org/10.1016/j.hydromet.2020.105457.Suche in Google Scholar
25. Lorens, R. B., Bender, M. L. The impact of solution chemistry on Mytilus edulis calcite and aragonite. Geochim. Cosmochim. Acta 1980, 44, 1265; https://doi.org/10.1016/0016-7037(80)90087-3.Suche in Google Scholar
26. Shen, L., Tesfaye, F., Li, X., Lindberg, D., Taskinen, P. Review of rhenium extraction and recycling technologies from primary and secondary resources. Miner. Eng. 2021, 161, 106719; https://doi.org/10.1016/j.mineng.2020.106719.Suche in Google Scholar
27. Shults, W. D. Applications of controlled-potential coulometry to the determination of plutonium. Talanta 1963, 10, 833; https://doi.org/10.1016/0039-9140(63)80244-1.Suche in Google Scholar
28. Sharma, H. S., Khedekar, N. B., Marathe, S. G., Jain, H. C. Controlled potential coulometric determination of plutonium in mixed (U, Pu) carbide fuels. Nucl. Technol. 1990, 89, 399; https://doi.org/10.13182/nt90-a34378.Suche in Google Scholar
29. Sharma, H. S., Jisha, V., Noronha, D. M., Sharma, M. K., Aggarwal, S. K. Performance Evaluation of Indigenous Controlled Potential Coulometer for the Determination of Uranium and Plutonium; BARC Report: India, 2007.Suche in Google Scholar
30. Sharma, M., Kamat, J., Ambolikar, A., Pillai, J., Aggarwal, S. Coulometry for the Determination of Uranium and Plutonium: Past and Present; BARC: India, 2012.Suche in Google Scholar
31. Sharma, H. S., Manolkar, R. B., Kamat, J. V., Marathe, S. G. Studies on the coulometric determination of uranium and plutonium employing a graphite electrode. Fresenius’ J. Anal. Chem. 1993, 347, 486; https://doi.org/10.1007/bf00324240.Suche in Google Scholar
32. Jagadeeswara Rao, C., Venkatesan, K. A., Nagarajan, K., Srinivasan, T. G., Vasudeva Rao, P. R. Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid. J. Nucl. Mater. 2011, 408, 25; https://doi.org/10.1016/j.jnucmat.2010.10.022.Suche in Google Scholar
33. Jagadeeswara Rao, Ch., Venkatesan, K. A., Nagarajan, K., Srinivasan, T. G. Dissolution of uranium oxides and electrochemical behavior of U (VI) in task specific ionic liquid. Radiochim. Acta 2008, 96, 403; https://doi.org/10.1524/ract.2008.1508.Suche in Google Scholar
34. Joseph, B., Venkatesan, K., Nagarajan, K., Srinivasan, T., Vasudeva Rao, P. Lithium assisted electrochemical reduction of uranium oxide in room temperature ionic liquid. J. Radioanal. Nucl. Chem. 2011, 287, 167; https://doi.org/10.1007/s10967-010-0682-6.Suche in Google Scholar
35. Sengupta, A., Murali, M. S., Mohapatra, P. K. Role of alkyl substituent in room temperature ionic liquid on the electrochemical behavior of uranium ion and its local environment. J. Radioanal. Nucl. Chem. 2013, 298, 209; https://doi.org/10.1007/s10967-012-2334-5.Suche in Google Scholar
36. Harris, W., Kolthoff, I. The polarography of Uranium. III. Polarography in very weakly acid, neutral or basic solution 1. J. Am. Chem. Soc. 1947, 69, 446; https://doi.org/10.1021/ja01194a073.Suche in Google Scholar
37. Kihara, S. Analytical chemical studies on electrode processes by column coulometry: I. Basic studies on the column electrode. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 31; https://doi.org/10.1016/s0022-0728(73)80006-3.Suche in Google Scholar
38. Baker, B. C., Sawyer, D. T. Electrochemical studies of the uranium(VI)-ethylenediaminetetraacetic acid complex. Inorg. Chem. 1970, 9, 197; https://doi.org/10.1021/ic50084a001.Suche in Google Scholar
39. Rajak, S., Ghosh, S. K., Varshney, J., Srivastava, A., Tewari, R., Kain, V. Electrochemical investigation of uranyl species reduction in alkaline oxalate electrolyte and microstructural characterization of deposited nanocrystalline UO2 thin films. J. Electroanal. Chem. 2018, 812, 45; https://doi.org/10.1016/j.jelechem.2018.01.060.Suche in Google Scholar
40. Mishra, S., Sini, K., Rao, C. J., Mallika, C., Mudali, U. K. Electrochemical studies on the reduction of uranyl ions in nitric acid-hydrazine media. J. Electroanal. Chem. 2016, 776, 127; https://doi.org/10.1016/j.jelechem.2016.07.002.Suche in Google Scholar
41. Ghandour, M., Abo-Doma, R., Gomaa, E. The electroreduction (polarographically) of uranyl ion in nitric acid and nitric acid-methanol mixture media. Electrochim. Acta 1982, 27, 159; https://doi.org/10.1016/0013-4686(82)80075-3.Suche in Google Scholar
42. Kim, K. W., Kim, J. D., Aoyagi, H., Toida, Y., Yoshida, Z. Pretreatment of a titanium electrode for reduction of uranium(VI) in nitric acid-hydrazine media. J. Nucl. Sci. Technol. 1993, 30, 554; https://doi.org/10.1080/18811248.1993.9734518.Suche in Google Scholar
43. Sini, K., Mishra, S., Mallika, C., Pandey, N. K., Srinivasan, R., Kamachi Mudali, U., Natarajan, R. Kinetics and optimisation of process parameters for electrochemical generation of uranous ions in nitric acid-hydrazine media. J. Radioanal. Nucl. Chem. 2013, 298, 301; https://doi.org/10.1007/s10967-013-2470-6.Suche in Google Scholar
44. Passalacqua, E., Lufrano, F., Squadrito, G., Patti, A., Giorgi, L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim. Acta 2001, 46, 799; https://doi.org/10.1016/s0013-4686(00)00679-4.Suche in Google Scholar
45. Méndez, E., Cerdá, M. a. F., Luna, A. M. C., Zinola, C. F., Kremer, C., Martins, M. a. E. Electrochemical behavior of aqueous acid perrhenate-containing solutions on noble metals: critical review and new experimental evidence. J. Colloid Interface Sci. 2003, 263, 119.10.1016/S0021-9797(03)00165-6Suche in Google Scholar
46. Pieck, C., Marecot, P., Barbier, J. Preparation of PtRe/Al2O3 catalysts by surface redox reactions II. Influence of the acid medium on Re deposition and PtRe interaction. Appl. Catal. A 1996, 143, 283; https://doi.org/10.1016/0926-860x(96)00086-5.Suche in Google Scholar
47. Tang, H., Pesic, B. Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim. Acta 2014, 119, 120; https://doi.org/10.1016/j.electacta.2013.11.148.Suche in Google Scholar
48. Bard, A. J., Faulkner, L. R. Fundamentals and applications: electrochemical methods. Electrochem. Methods 2001, 2, 482.Suche in Google Scholar
49. Ramaley, L., Krause, M. S. Theory of square wave voltammetry. Anal. Chem. 1969, 41, 1362; https://doi.org/10.1021/ac60280a005.Suche in Google Scholar
50. Osteryoung, J. G., Osteryoung, R. A. Square wave voltammetry. Anal. Chem. 1985, 57, 101; https://doi.org/10.1021/ac00279a004.Suche in Google Scholar
51. Méndez, E., Cerdá, M. F., Castro Luna, A. M., Zinola, C. F., Kremer, C., Martins, M. E. Electrochemical behavior of aqueous acid perrhenate-containing solutions on noble metals: critical review and new experimental evidence. J. Colloid Interface Sci. 2003, 263, 119.10.1016/S0021-9797(03)00165-6Suche in Google Scholar
52. Wu, J. K., Shen, X. H., Chen, Q.-D. Electrochemical behavior of the system of uranium(VI) extraction with CMPO-ionic liquid. Acta Phys-Chim Sin. 2013, 29, 1705.10.3866/PKU.WHXB201306043Suche in Google Scholar
53. Mastragostino, M., Saveant, J. M. Disproportionation and ECE mechanisms—II. Reduction of the uranyl cation in perchloric acid. Electrochim. Acta 1968, 13, 751; https://doi.org/10.1016/0013-4686(68)85008-x.Suche in Google Scholar
54. Delahay, P. New Instrumental Methods in Electrochemistry: Theory, Instrumentation, and Application to Analytical and Physical Chemistry; Interscience Publishers: New York, 1954.Suche in Google Scholar
55. Dash, A., Agarwal, R., Mukerjee, S. K. Electrochemical behaviour of uranium and thorium aqueous solutions at different temperatures. J. Radioanal. Nucl. Chem. 2017, 311, 733; https://doi.org/10.1007/s10967-016-5088-7.Suche in Google Scholar
56. Mishra, S., K, S., Rao, C. J., Mallika, C., Mudali, U. K. Electrochemical studies on the reduction of uranyl ions in nitric acid-hydrazine media. J. Electroanal. Chem. 2016, 776, 127; https://doi.org/10.1016/j.jelechem.2016.07.002.Suche in Google Scholar
57. Awakura, Y., Sato, K., Majima, H., Hirono, S. The measurement of the diffusion coefficient of U(VI) in aqueous uranyl sulfate solutions. Metall. Trans. B 1987, 18, 19; https://doi.org/10.1007/bf02658427.Suche in Google Scholar
58. Chotkowski, M., Czerwiński, A. Electrochemical and spectroelectrochemical studies of pertechnetate electroreduction in acidic media. Electrochim. Acta 2012, 76, 165; https://doi.org/10.1016/j.electacta.2012.04.123.Suche in Google Scholar
59. Chotkowski, M., Grdeń, M., Wrzosek, B. Intermediate oxidation states of technetium in alkaline solutions. J. Electroanal. Chem. 2018, 829, 148; https://doi.org/10.1016/j.jelechem.2018.10.003.Suche in Google Scholar
60. Maun, E. K., Davidson, N. Investigations in the chemistry of rhenium. I. Oxidation states IV, V and VII1, 2. J. Am. Chem. Soc. 1950, 72, 2254; https://doi.org/10.1021/ja01161a104.Suche in Google Scholar
61. Crouthamel, C. E. Thiocyanate spectrophotometric determination of technetium. Anal. Chem. 1957, 29, 1756; https://doi.org/10.1021/ac60132a024.Suche in Google Scholar
62. Zhang, X. X., Zhao, Y. Z., Zhou, W. Y. Electrolytic reduction of Re(VII) using a flow type electrolysis cell and its possibility of radiopharmaceuticals application. Nucl. Sci. Tech. 2015, 26, 10308.Suche in Google Scholar
63. Mazzocchin, G. A., Magno, F., Bontempelli, G. Reduction of aqueous rhenate(VII) at a platinum electrode. Inorg. Chim. Acta 1975, 13, 209; https://doi.org/10.1016/s0020-1693(00)90199-3.Suche in Google Scholar
64. Dadachova, E., Smith, S. V., Mirzadeh, S. Electrolytic reduction of carrier-free 188Re. Appl. Radiat. Isot. 1996, 47, 289; https://doi.org/10.1016/0969-8043(95)00301-0.Suche in Google Scholar
65. Hoshi, H., Wei, Y. Z., Kumagai, M., Asakura, T., Morita, Y. Electrolytic reduction of Tc(VII) in nitric acid solution using glassy carbon electrode. J. Radioanal. Nucl. Chem. 2004, 262, 601; https://doi.org/10.1007/s10967-004-0482-y.Suche in Google Scholar
66. Shapiro, E. S., Avaev, V. I., Antoshin, G. N., Ryashentseva, M. A., Minachev, K. M. XPS (X-ray photoelectron spectroscopy) studies of the rhenium state in supported Re catalysts. J. Catal. 1978, 55.Suche in Google Scholar
67. Cimino, A., De Angelis, B., Gazzoli, D., Valigi, M. Photoelectron spectroscopy (XPS) and thermogravimetry (TG) of pure and supported rhenium oxides 1. Pure rhenium compounds. Z. Anorg. Allg. Chem. 1980, 460, 86; https://doi.org/10.1002/zaac.19804600109.Suche in Google Scholar
68. Tysoe, W. T., Zaera, F., Somorjai, G. A. An XPS study of the oxidation and reduction of the rhenium-platinum system under atmospheric conditions. Surf. Sci. 1988, 200, 1; https://doi.org/10.1016/0039-6028(88)90428-1.Suche in Google Scholar
69. Szabó, S., Bakos, I. Electroreduction of rhenium from sulfuric acid solutions of perrhenic acid. J. Electroanal. Chem. 2000, 492, 103.10.1016/S0022-0728(00)00224-2Suche in Google Scholar
70. Pourbaix, M. Atlas of electrochemical equilibria in aqueous solution. NACE 1974, 307, 343.Suche in Google Scholar
71. Bakos, I., Horányi, G., Szabó, S., Rizmayer, E. M. Electrocatalytic reduction of ClO4− ions at an electrodeposited Re layer. J. Electroanal. Chem. 1993, 359, 241; https://doi.org/10.1016/0022-0728(93)80412-b.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands
- Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution
- Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite
- Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region
- Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent
- Electrochemical reduction of uranium and rhenium in hydrochloric acid system
- A sensitive improved method for analyzing diffusion coefficients of Cs in compacted bentonite with different lengths
- Adsorption behavior of chromium in an aqueous suspension of δ-alumina in absence and in presence of humic substances
- A novel theranostic probe [111In]In-DO3A-NHS-nimotuzumab in glioma xenograft
- Lead-free Sb-based polymer composite for γ-ray shielding purposes
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Spectroscopic investigation of the different complexation and extraction properties of diastereomeric diglycolamide ligands
- Influence of plutonium oxidation state on the formation of molecular hydrogen, nitrous acid and nitrous oxide from alpha radiolysis of nitric acid solution
- Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite
- Application of artificial neural networks for predicting the isotopic composition of high burn-up solid plutonium sample using the 90–105 keV gamma-spectrum region
- Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent
- Electrochemical reduction of uranium and rhenium in hydrochloric acid system
- A sensitive improved method for analyzing diffusion coefficients of Cs in compacted bentonite with different lengths
- Adsorption behavior of chromium in an aqueous suspension of δ-alumina in absence and in presence of humic substances
- A novel theranostic probe [111In]In-DO3A-NHS-nimotuzumab in glioma xenograft
- Lead-free Sb-based polymer composite for γ-ray shielding purposes