Home Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite
Article
Licensed
Unlicensed Requires Authentication

Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite

  • Yun Zhou , Huai-Xin Hao , Tian-Hao Dong , Xu-Feng Ni , Yi-Chen Hu , Jia-Ju Ma , Jun-Qiang Yang , Ke-Liang Shi , Guo-Jian Duan and Tong-Huan Liu EMAIL logo
Published/Copyright: May 2, 2022

Abstract

With the rapid development of nuclear energy, how to safely and efficiently dispose of radioactive waste solution has become an urgent environmental problem of public concern. It is of great significance to construct a new type of high-efficiency adsorbent material to recover uranium from nuclear waste solution. In this work, the Ti3C2Tx material (an emerging two-dimensional inorganic layered material) with a stable layered structure was used as the matrix, and the amidoxime functionalized MXene composite material (PAO/Ti3C2Tx) was synthesized by in-situ polymerization. The amidoxime-functionalized Ti3C2Tx showed excellent capacity to capture U(VI), with a maximum adsorption capacity of 98.04 mg/g at 25 °C, which was significantly better than that of Ti3C2Tx, and the adsorption selectivity for U(VI) was greatly improved. The adsorption was conformed to Langmuir isotherm model and pseudo-second-order kinetic model. In addition, the adsorbed UO22+ could be effectively desorbed by 0.1 M HNO3, and the adsorption performance of PAO/Ti3C2Tx did not decrease significantly after 5 adsorption/desorption cycles. The results of ionic strength experiment, FT-IR, SEM, and XPS jointly indicated that adsorption mechanism of U(VI) on PAO/Ti3C2Tx was the combined effect of the amidoxime group and -O and -OH active groups on the surface of Ti3C2Tx, mainly inner complexation. These advantages make PAO/Ti3C2Tx composite a highly potential U(VI) adsorbent with great application prospects.


Corresponding author: Tong-Huan Liu, Frontier Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, P. R. China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, P. R. China; and Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, P. R. China, E-mail:
Y.Z. and H.H. contributed equally to this work.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 21762001

Award Identifier / Grant number: 22061132004

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: lzujbky-2021-kb06

Funding source: Gansu University of Chinese Medicine

Award Identifier / Grant number: 2021CX43

Award Identifier / Grant number: 21JR1RA265

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the National Natural Science Foundation of China (No. 21762001 and 22061132004), Fundamental Research Funds for the Central Universities (lzujbky-2021-kb06) and Science and Technology Projects of Gansu Province (21JR1RA265) Gansu University of Chinese Medicine Postgraduate Innovation Fund Projects (2021CX43) [1].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hwang, S. K., Kang, S. M., Rethinasabapathy, M., Roh, C., Huh, Y. S. MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020, 397, 125428; https://doi.org/10.1016/j.cej.2020.125428.Search in Google Scholar

2. Yusan, S. D., Akyil, S. Sorption of uranium(VI) from aqueous solutions by akaganeite. J. Hazard Mater. 2008, 160, 388–395; https://doi.org/10.1016/j.jhazmat.2008.03.009.Search in Google Scholar PubMed

3. Huang, Z., Li, Z., Zheng, L., Zhou, L., Chai, Z., Wang, X., Shi, W. Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chem. Eng. J. 2017, 328, 1066–1074; https://doi.org/10.1016/j.cej.2017.07.067.Search in Google Scholar

4. Wang, L., Yuan, L., Chen, K., Zhang, Y., Deng, Q., Du, S., Huang, Q., Zheng, L., Zhang, J., Chai, Z., Barsoum, M., Wang, X., Shi, W. Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl. Mater. Interfaces 2016, 8, 16396–16403; https://doi.org/10.1021/acsami.6b02989.Search in Google Scholar PubMed

5. Anspaugh, L. R., Catlin, R. J., Goldman, M. The global impact of the Chernobyl reactor accident. Science 1988, 242, 1513–1519; https://doi.org/10.1126/science.3201240.Search in Google Scholar PubMed

6. Wang, X., Chen, L., Wang, L., Fan, Q., Pan, D., Li, J., Chi, F., Xie, Y., Yu, S., Xiao, C., Luo, F., Wang, J., Wang, X., Chen, C., Wu, W., Shi, W., Wang, S., Wang, X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 2019, 62, 933–967; https://doi.org/10.1007/s11426-019-9492-4.Search in Google Scholar

7. Fan, Q. H., Guo, Z. J., Wu, W. S. Radionuclide sorption at solid-liquid surfaces: models and applications. Prog. Chem. 2011, 23, 1429–1445.Search in Google Scholar

8. Wang, H., Ma, S., Pu, K. Anatoly Zinchenko Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J. Hazard Mater. 2019, 362, 160–169; https://doi.org/10.1016/j.jhazmat.2018.08.067.Search in Google Scholar PubMed

9. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669; https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

10. Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., Gogotsi, Y., Barsoum, M. W. Conductive two-dimensional titanium carbide ’clay’ with high volumetric capacitance. Nature 2014, 516, 78–81; https://doi.org/10.1038/nature13970.Search in Google Scholar PubMed

11. Liang, X., Garsuch, A., Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 2015, 54, 3907–3911; https://doi.org/10.1002/anie.201410174.Search in Google Scholar PubMed

12. Zhang, Y., Wang, L., Zhang, N., Zhou, Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018, 8, 19895–19905; https://doi.org/10.1039/c8ra03077d.Search in Google Scholar PubMed PubMed Central

13. Seh, Z. W., Fredrickson, K. D., Anasori, B., Kibsgaard, J., Strickler, A. L., Lukatskaya, M. R., Gogotsi, Y., Jaramillo, T. F., Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594; https://doi.org/10.1021/acsenergylett.6b00247.Search in Google Scholar

14. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253; https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed

15. Peng, J., Chen, X., Ong, W.-J., Zhao, X., Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Inside Chem. 2019, 5, 18–50; https://doi.org/10.1016/j.chempr.2018.08.037.Search in Google Scholar

16. Mashtalir, O., Cook, K. M., Mochalin, V. N., Crowe, M., Barsoum, M. W., Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. 2014, 2, 14334–14338; https://doi.org/10.1039/c4ta02638a.Search in Google Scholar

17. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644; https://doi.org/10.1021/acs.chemmater.7b02847.Search in Google Scholar

18. Zhang, Y. J., Lan, J. H., Wang, L., Wu, Q-Y., Wang, C-Z., Bo, T., Chai, Z-F., Shi, W. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J. Hazard Mater. 2016, 308, 402–410; https://doi.org/10.1016/j.jhazmat.2016.01.053.Search in Google Scholar PubMed

19. Wang, L., Tao, W., Yuan, L., Liu, Z., Huang, Q., Chai, Z., Gibson, J. K., Shi, W. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun (Camb). 2017, 53, 12084–12087; https://doi.org/10.1039/c7cc06740b.Search in Google Scholar PubMed

20. Chen, H., Shao, D., Li, J., Wang, X. The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem. Eng. J. 2014, 254, 623–634; https://doi.org/10.1016/j.cej.2014.05.091.Search in Google Scholar

21. Liu, P., Yu, Q., Xue, Y., Chen, J., Ma, F. Adsorption performance of U(VI) by amidoxime-based activated carbon. J. Radioanal. Nucl. Chem. 2020, 324, 813–822; https://doi.org/10.1007/s10967-020-07111-x.Search in Google Scholar

22. Gunathilake, C., Górka, J., Dai, S., Jaroniec, M. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. 2015, 3, 11650–11659; https://doi.org/10.1039/c5ta02863a.Search in Google Scholar

23. Abney, C. W., Mayes, R. T., Saito, T., Dai, S. Materials for the recovery of uranium from seawater. Chem. Rev. 2017, 117, 13935–14013; https://doi.org/10.1021/acs.chemrev.7b00355.Search in Google Scholar PubMed

24. Habib, T., Zhao, X., Shah, S. A., Chen, Y., Sun, W., An, H., Lutkenhaus, J. L., Radovic, M., Green, M. J. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 2019, 3, 4248–4253; https://doi.org/10.1038/s41699-019-0089-3.Search in Google Scholar

25. Wang, L., Song, H., Yuan, L., Li, Z., Zhang, Y., Gibson, J. K., Zheng, L., Chai, Z., Shi, W. Efficient U(VI) reduction and sequestration by Ti2CTxMXene. Environ. Sci. Technol. 2018, 52, 10748–10756; https://doi.org/10.1021/acs.est.8b03711.Search in Google Scholar PubMed

26. Bi, L., Ma, J., Niu, Z., Duan, G., Lei, Z., Wu, R., Hu, P., Qian, L., Wu, W., Liu, T. Synthesis of β-cyclodextrin derivatives and their selective separation behaviors for U(VI) in solution. J. Radioanal. Nucl. Chem. 2020, 326, 719–736; https://doi.org/10.1007/s10967-020-07343-x.Search in Google Scholar

27. Aguila, B., Sun, Q., Cassady, H., Abney, C. W., Li, B., Mai, S. Design strategies to enhance amidoxime chelators for uranium recovery. ACS Appl. Mater. Interfaces 2019, 11, 30919–30926; https://doi.org/10.1021/acsami.9b09532.Search in Google Scholar PubMed

28. Peng, Q., Guo, J., Zhang, Q., Xiang, J., Liu, B., Zhou, A., Liu, R., Tian, Y. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116; https://doi.org/10.1021/ja500506k.Search in Google Scholar PubMed

29. Gu, P., Song, S., Zhang, S., Wei, B., Wen, T., Wang, X. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation. Acta Phys. – Chim. Sin. 2018, 76, 701–708; https://doi.org/10.6023/a18060245.Search in Google Scholar

30. Zhao, J., Li, B., Jiang, G. Effect of pH on zeta potential of silicone oil emulsions and its preparation. Chem. Res. Appl. 2005, 03, 386–388.Search in Google Scholar

31. Wang, H., Li, M., Wu, Z. Effect of petroleum sulfonate, HPAM and pH on Zeta potential of montmorillonite. Appl. Chem. 2005, 08, 915–917.Search in Google Scholar

32. Yang, S., Sheng, G., Guo, Z., Tan, X., Xu, J., Wang, X. Investigation of radionuclide 63Ni(II) sequestration mechanisms on mordenite by batch and EXAFS spectroscopy study. Sci. China Chem. 2011, 55, 632–642; https://doi.org/10.1007/s11426-011-4482-9.Search in Google Scholar

33. Zou, Y., Wang, P., Yao, W., Wang, X., Liu, Y., Yang, D., Wang, L., Hou, J., Alsaedi, A., Hayat, T., Wang, X. Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chem. Eng. J. 2017, 330, 573–584; https://doi.org/10.1016/j.cej.2017.07.135.Search in Google Scholar

34. Zhang, P., Wang, L., Huang, Z., Yu, J., Li, Z., Deng, H., Yin, T., Yuan, L., Gibson, J. K., Mei, L., Zheng, L., Wang, H., Chai, Z., Shi, W. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 2020, 12, 15579–15587; https://doi.org/10.1021/acsami.0c00861.Search in Google Scholar PubMed

35. Pan, N., Li, L., Ding, J., Li, S., Wang, R., Jin, Y., Wang, X., Xia, C. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI). J. Hazard Mater. 2016, 309, 107–115; https://doi.org/10.1016/j.jhazmat.2016.02.012.Search in Google Scholar PubMed

36. Salameh, S. I. Y., Khalili, F. I., Al-Dujaili, A. H. Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: evaluation of equilibrium, kinetic and thermodynamic data. Int. J. Miner. Process. 2017, 168, 9–18; https://doi.org/10.1016/j.minpro.2017.08.007.Search in Google Scholar

37. Yi, X. S., Shi, W. X., Yu, S. L., Wang, Y., Sun, N., Jin, L. M., Wang, S. Isotherm and kinetic behavior of adsorption of anion polyacrylamide (APAM) from aqueous solution using two kinds of PVDF UF membranes. J. Hazard Mater. 2011, 189, 495–501; https://doi.org/10.1016/j.jhazmat.2011.02.063.Search in Google Scholar PubMed

38. Zhu, Y., Chen, T., Liu, H., Xu, B., Xie, J. Kinetics and thermodynamics of Eu(III) and U(VI) adsorption onto palygorskite. J. Mol. Liq. 2016, 219, 272–278; https://doi.org/10.1016/j.molliq.2016.03.034.Search in Google Scholar

39. Song, W., Hu, J., Zhao, Y., Shao, D., Li, J. Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv. 2013, 3, 9514–9521; https://doi.org/10.1039/c3ra41434e.Search in Google Scholar

40. Li, F., Yang, Z., Weng, H., Chen, G., Lin, M., Zhao, C. High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem. Eng. J. 2018, 332, 340–350; https://doi.org/10.1016/j.cej.2017.09.038.Search in Google Scholar

41. Wang, J., Wang, Y., Zhou, N. The uptake of uranium and europium on the polyacrylamide/titanium dioxide composites. J. Phys. Chem. Solid. 2020, 140, 109387; https://doi.org/10.1016/j.jpcs.2020.109387.Search in Google Scholar

42. Halim, J., Cook, K. M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, Barsoum, M. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417; https://doi.org/10.1016/j.apsusc.2015.11.089.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1130).


Received: 2021-11-24
Accepted: 2022-03-03
Published Online: 2022-05-02
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1130/html
Scroll to top button