Startseite Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide

  • Amir Doram , Mohammad Outokesh , Seyed Javad Ahmadi und Fazel Zahakifar EMAIL logo
Veröffentlicht/Copyright: 29. November 2021

Abstract

The current study presents a simple and scalable method for the synthesis of (aminomethyl)phosphonic acid-functionalized graphene oxide (AMPA-GO) adsorbent. The chemical structure of the new material was disclosed by different instrumental analyses (e.g. FTIR, Raman, XPS, AFM, TEM, XRD, CHN, and UV), and two pertinent mechanisms namely nucleophilic substitution and condensation were suggested for its formation. Adsorption experiments revealed that both AMPA-GO and plain GO have a high affinity toward Th(IV) ions, but the AMPA-GO is superior in terms of adsorption capacity, rate of adsorption, selectivity, pH effect, etc. Indeed, the AMPA-GO can uptake Th(IV) nearly instantaneously, and coexisting Na+ ions have no effect on its adsorption. Thanks to Langmuir isotherm, the maximum adsorption capacities of the GO and AMPA-GO were obtained 151.06 and 178.67 mg g−1, respectively. Interestingly, GO and AMPA-GO both showed a higher preference for thorium over uranium so that the average “K d (Th)/K d (U)” for them was 52 and 44, respectively. This data suggests that chromatographic separation of thorium and uranium is feasible by these adsorbents.


Corresponding author: Fazel Zahakifar, Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 11365-8486 Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zahakifar, F., Keshtkar, A. R., Talebi, M. Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: a case study of thorium (IV). J. Radioanal. Nucl. Chem. 2021, 327, 65–72; https://doi.org/10.1007/s10967-020-07479-w.Suche in Google Scholar

2. Milani, S. A., Zahakifar, F., Charkhi, A. Continuous bulk liquid membrane technique for thorium transport: modeling and experimental validation. J. Iran. Chem. Soc. 2019, 16, 455–464; https://doi.org/10.1007/s13738-018-1516-7.Suche in Google Scholar

3. Allahyari, S. A., Ahmadi, S. J., Minuchehr, A., Charkhi, A. Th (IV) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation. RSC Adv. 2017, 7, 7413–7423.10.1039/C6RA26463HSuche in Google Scholar

4. Jaiswal, D., Dang, H., Sunta, C. Distribution of thorium in human tissues. J. Radioanal. Nucl. Chem. 1985, 88, 225–229.10.1007/BF02036999Suche in Google Scholar

5. Shimizu, H., Ikeda, K., Kamiyama, Y. Refining of a rare earth Including a Process for separation by a Reverse Osmosis membrane. Google Patents, 1992.Suche in Google Scholar

6. Vijayalakshmi, R., Mishra, S., Singh, H., Gupta, C. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80.10.1016/S0304-386X(00)00159-6Suche in Google Scholar

7. Moon, H-C. Equilibrium ultrafiltration of hydrolyzed thorium (IV) solutions. Bull.Korean Chem. Soc. 1989, 10, 270–272.Suche in Google Scholar

8. Bitea, C., Müller, R., Neck, V., Walther, C., Kim, J. Study of the generation and stability of thorium (IV) colloids by LIBD combined with ultrafiltration. Colloids Surf., A: Physicochem. Eng. 2003, 217, 63–70.10.1016/S0927-7757(02)00559-9Suche in Google Scholar

9. Ilaiyaraja, P., Deb, A. K. S., Ponraju, D. Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J. Radioanal. Nucl. Chem. 2015, 303, 441–450.10.1007/s10967-014-3462-xSuche in Google Scholar

10. Cheira, M. F., Orabi, A. S., Atia, B. M., Hassan, S. M. Solvent extraction and separation of thorium (IV) from Chloride media by a Schiff base. J. Solut. Chem. 2018, 47, 1–23.10.1007/s10953-018-0740-1Suche in Google Scholar

11. Zamani Souderjani, E., Keshtkar, A. R., Mousavian, M. A. Application of response surface methodology for thorium (IV) removal using Amberlite IR-120 and IRA-400: ion exchange equilibrium and kinetics. J. Particle Sci. Technol. 2017, 3, 101–112.Suche in Google Scholar

12. Ang, K. L., Li, D., Nikoloski, A. N. The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins. Hydrometallurgy 2017, 174, 147–115.10.1016/j.hydromet.2017.10.011Suche in Google Scholar

13. Talip, Z., Eral, M., Ü, Hiçsönmez. Adsorption of thorium from aqueous solutions by perlite. J. Environ. Radioact. 2009, 100, 139–143.10.1016/j.jenvrad.2008.09.004Suche in Google Scholar PubMed

14. Xiu, T., Liu, Z., Wang, Y., Wu, P., Du, Y., Cai, Z. Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J. Radioanal. Nucl. Chem. 2019, 319, 1059–1067.10.1007/s10967-019-06417-9Suche in Google Scholar

15. Chen, T., Zhang, N., Xu, Z., Hu, X., Ding, Z. Integrated comparisons of thorium (IV) adsorption onto alkali-treated duckweed biomass and duckweed-derived hydrothermal and pyrolytic biochar. Environ. Sci. Pollut. Control Ser. 2019, 26, 2523–2530.10.1007/s11356-018-3789-xSuche in Google Scholar

16. Tayyebi, A., Khanchi, A., Ghofrani, M., Outokesh, M. Synthesis and characterization of a bentonite-alginate microspherical adsorbent for removal of uranyl ions from aqueous solutions. Separ. Sci. Technol. 2010, 45, 288–298.10.1080/01496390903255903Suche in Google Scholar

17. Jiang, D., Liu, L., Pan, N., Yang, F., Li, S., Wang, R., Wyman, I. W., Jin, Y., Xia, C. The separation of Th (IV)/U (VI) via selective complexation with graphene oxide. Chem. Eng. J. 2015, 271, 147–154.10.1016/j.cej.2015.02.066Suche in Google Scholar

18. Teng, Y., Wang, R., Wu, J. Study of the fundamentals of adsorption systems. Appl. Therm. Eng. 1997, 17, 327–338.10.1016/S1359-4311(96)00039-7Suche in Google Scholar

19. Chakraborty, R., Asthana, A., Singh, A. K., Jain, B., Susan, A. B. H. Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int. J. Environ. Anal. Chem. 2020, 1, 1–38.10.1080/03067319.2020.1722811Suche in Google Scholar

20. Tayyebi, A., Outokesh, M. Supercritical synthesis of a magnetite-reduced graphene oxide hybrid with enhanced adsorption properties toward cobalt & strontium ions. RSC Adv. 2016, 6, 13898–13913.10.1039/C5RA19057FSuche in Google Scholar

21. Tavakoli, M. M., Tayyebi, A., Simchi, A., Aashuri, H., Outokesh, M., Fan, Z. Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol. J. Nanoparticle Res. 2015, 17, 9.10.1007/s11051-014-2854-8Suche in Google Scholar

22. Tayyebi, A., Tavakoli, M. M., Outokesh, M., Shafiekhani, A., Simchi, A. Supercritical synthesis and characterization of graphene–PbS quantum dots composite with enhanced photovoltaic properties. Ind. Eng. Chem. Res. 2015, 54, 7382–7392.10.1021/acs.iecr.5b00008Suche in Google Scholar

23. Tayyebi, A., Akhavan, O., Lee, B-K., Outokesh, M. Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues. Carbon 2018, 130, 267–272.10.1016/j.carbon.2017.12.057Suche in Google Scholar

24. Sherlala, A., Raman, A., Bello, M., Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017.10.1016/j.chemosphere.2017.11.093Suche in Google Scholar PubMed

25. Peng, W., Li, H., Liu, Y., Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504.10.1016/j.molliq.2017.01.064Suche in Google Scholar

26. Tayyebi, A., Outokesh, M., Moradi, S., Doram, A. Synthesis and characterization of ultrasound assisted “graphene oxide–magnetite” hybrid, and investigation of its adsorption properties for Sr (II) and Co (II) ions. Appl. Surf. Sci. 2015, 353, 350–362.10.1016/j.apsusc.2015.06.087Suche in Google Scholar

27. Yu, W., Sisi, L., Haiyan, Y., Jie, L. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 2020, 10, 15328–15345.10.1039/D0RA01068ESuche in Google Scholar

28. Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal, S. Kinetics of the adsorption of Pb (II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J. Mol. Liq. 2015, 209, 50–57.10.1016/j.molliq.2015.05.022Suche in Google Scholar

29. Wu, W., Yang, Y., Zhou, H., Ye, T., Huang, Z., Liu, R., Kuang, Y. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water, Air, Soil Pollut. 2013, 224, 1372.10.1007/s11270-012-1372-5Suche in Google Scholar

30. Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440.10.1016/j.apsusc.2013.04.133Suche in Google Scholar

31. Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B., Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689.10.1039/c3dt33097dSuche in Google Scholar PubMed

32. Lingamdinne, L. P., Koduru, J. R., Roh, H., Choi, Y-L., Chang, Y-Y., Yang, J-K. Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96.10.1016/j.hydromet.2015.10.021Suche in Google Scholar

33. Najafi, F., Moradi, O., Rajabi, M., Asif, M., Tyagi, I., Agarwal, S., Gupta, V. K. Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J. Mol. Liq. 2015, 208, 106–113.10.1016/j.molliq.2015.04.033Suche in Google Scholar

34. Sun, Y., Wang, Q., Chen, C., Tan, X., Wang, X. Interaction between Eu (III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027.10.1021/es300720fSuche in Google Scholar PubMed

35. Alamdarlo, F. V., Solookinejad, G., Zahakifar, F., Jalal, M. R., Jabbari, M. Study of kinetic, thermodynamic, and isotherm of Sr adsorption from aqueous solutions on graphene oxide (GO) and (aminomethyl) phosphonic acid–graphene oxide (AMPA–GO). J. Radioanal. Nucl. Chem. 2021, 329, 1033–1043.10.1007/s10967-021-07845-2Suche in Google Scholar

36. Zhou, C., Zhu, H., Wang, Q., Wang, J., Cheng, J., Guo, Y., Zhou, X., Bai, R. Adsorption of mercury (II) with an Fe 3 O 4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Adv. 2017, 7, 18466–18479.10.1039/C7RA01147DSuche in Google Scholar

37. Alzate-Carvajal, N., Basiuk, E. V., Meza-Laguna, V., Puente-Lee, I., Farías, M. H., Bogdanchikova, N., Basiuk, V. A. Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Adv. 2016, 6, 113596–113610.10.1039/C6RA22658BSuche in Google Scholar

38. Compton, O. C., Dikin, D. A., Putz, K. W., Brinson, L. C., Nguyen, S. T. Electrically conductive “alkylated” graphene paper via chemical reduction of amine‐functionalized graphene oxide paper. Adv. Mater. 2010, 22, 892–896.10.1002/adma.200902069Suche in Google Scholar PubMed

39. Wang, Z., Dong, Y., Li, H., Zhao, Z., Wu, H. B., Hao, C., Liu, S., Qiu, J., Lou, X. W. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 1–8.10.1038/ncomms6002Suche in Google Scholar PubMed

40. Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., Okamoto, A. Optically tunable amino‐functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.10.1002/adma.201201930Suche in Google Scholar PubMed

41. Xin, Q., Li, Z., Li, C., Wang, S., Jiang, Z., Wu, H., Zhang, Y., Yang, J., Cao, X. Enhancing the CO 2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J. Mater. Chem. 2015, 3, 6629–6641.10.1039/C5TA00506JSuche in Google Scholar

42. Mohapatra, P., Veeraraghavan, R., Manchanda, V. Extraction of thorium (IV) by a mixture of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and tri-n-octyl phosphine oxide. J. Radioanal. Nucl. Chem. 1999, 240, 31–38.10.1007/BF02349133Suche in Google Scholar

43. Watanabe, K. Extraction of thorium and uranium from Chloride solutions by tri-n-Butyl phosphate and tri-n-octyl phosphine oxide. J. Nucl. Sci. Technol. 1964, 1, 155–162.10.1080/18811248.1964.9732101Suche in Google Scholar

44. Shamsipur, M., Yamini, Y., Ashtari, P., Khanchi, A. R., Ghannadi-Marageh, M. A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using octadecyl silica membrane disks modified by tri-n-octyl phosphine oxide. Separ. Sci. Technol. 2000, 35, 1011–1019.10.1081/SS-100100207Suche in Google Scholar

45. Sato, T. The extraction of thorium from nitric acid solutions by di (2-ethylhexyl)-phosphoric acid. J. Inorg. Nucl. Chem. 1967, 29, 555–563.10.1016/0022-1902(67)80061-7Suche in Google Scholar

46. Nanda, D., Oak, M., Maiti, B., Chauhan, H., Dutta, P. Selective and uphill transport of uranyl ion in the presence of some base metals and thorium across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Separ. Sci. Technol. 2002, 37, 3357–3367.10.1081/SS-120006167Suche in Google Scholar

47. Peppard, D., Mason, G., Gergel, M. The mutual separation of thorium, protoactinium, and uranium by tributyl phosphate extraction from hydrochloric acid. J. Inorg. Nucl. Chem. 1957, 3, 370–378.10.1016/0022-1902(57)80044-XSuche in Google Scholar

48. Zhou, Z-M., Sun, Y-X., Yu, S-N., Du, H-F. Kinetic studies on the solvent extraction of uranium (IV), thorium (IV) and uranium (VI) from nitric acid solutions with tributyl phosphate. J. Radioanal. Nucl. Chem. 1996, 214, 369–379.10.1007/BF02163824Suche in Google Scholar

49. Dinkar, A., Singh, S. K., Tripathi, S., Verma, R., Reddy, A. Studies on the separation and recovery of thorium from nitric acid medium using (2-ethyl hexyl) phosphonic acid, mono (2-ethyl hexyl) ester (PC88A)/n-dodecane as extractant system. Separ. Sci. Technol. 2012, 47, 1748–1753.10.1080/01496395.2012.659786Suche in Google Scholar

50. Mishra, S., Chakravortty, Y. Liquid-liquid extraction of thorium (IV) with binary mixture of PC88A and TOPO from aqueous HCIO4 media. NISCAIR-CSIR 1996, 1, 373–374.Suche in Google Scholar

51. Madane, N., Mohite, B. Development of reliable analytical method for extraction and separation of thorium (IV) by Cyanex 272 in kerosene. J. Radioanal. Nucl. Chem. 2011, 290, 649–654.10.1007/s10967-011-1344-zSuche in Google Scholar

52. Singh, M., Sengupta, A., Murali, M., Kadam, R. Comparative study on the radiolytic stability of TBP, DHOA, Cyanex 923 and Cyanex 272 in ionic liquid and molecular diluent for the extraction of thorium. J. Radioanal. Nucl. Chem. 2016, 309, 615–625.10.1007/s10967-015-4624-1Suche in Google Scholar

53. Karve, M., Belwalkar, S., Rajgor, R. Solvent extraction separation of thorium (IV) from nitric acid with Cyanex 272. NISCAIR-CSIR 2006, 1, 406–408.Suche in Google Scholar

54. Zaaba, N., Foo, K., Hashim, U., Tan, S., Liu, W-W., Voon, C. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 2017, 184, 469–477.10.1016/j.proeng.2017.04.118Suche in Google Scholar

55. Alam, S. N., Sharma, N., Kumar, L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 2017, 6, 1–18.10.4236/graphene.2017.61001Suche in Google Scholar

56. Alamdarlo, F. V., Solookinejad, G., Zahakifar, F., Jalal, M. R., Jabbari, M. Synthesis of graphene oxide and functionalized graphene oxide using improved hummers method for the adsorption of lead from aqueous solutions. J. Water Wastewater 2021, 32, 108–121.Suche in Google Scholar

57. Vaziri Alamdarlo, F., Solookinejad, G., Zahakifar, F., Rezvani Jalal, M., Jabbari, M. Synthesis of graphene oxide functionalized with Amio methyl phosphonic acid (AMPA) and its Structural characterization. J. Optoelectron. Nanostruct. 2021, 6, 91–106.Suche in Google Scholar

58. Gao, Z., Wang, J., Li, Z., Yang, W., Wang, B., Hou, M., He, Y., Liu, Q., Mann, T., Yang, P., Zhang, M., Liu, L. Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem. Mater. 2011, 23, 3509–3516.10.1021/cm200975xSuche in Google Scholar

59. Stankovich, S., Piner, R. D., Nguyen, S. T., Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.10.1016/j.carbon.2006.06.004Suche in Google Scholar

60. Daneshmand, M., Outokesh, M., Akbari, A., Kosari, M., Tayyebi, A. Synthesis of “L-cysteine–graphene oxide” hybrid by new methods and elucidation of its uptake properties for Hg (II) ion. Separ. Sci. Technol. 2018, 53, 843–855.10.1080/01496395.2017.1418889Suche in Google Scholar

61. Raji, M., Zari, N., Bouhfid, R. Chemical preparation and functionalization techniques of graphene and graphene oxide. In Functionalized Graphene Nanocomposites and Their Derivatives; Elsevier, 2019, pp. 1–20.10.1016/B978-0-12-814548-7.00001-5Suche in Google Scholar

62. Mallakpour, S., Abdolmaleki, A., Borandeh, S. Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl. Surf. Sci. 2014, 307, 533–542.10.1016/j.apsusc.2014.04.070Suche in Google Scholar

63. Lai, L., Chen, L., Zhan, D., Sun, L., Liu, J., Lim, S. H., Poh, C. K., Shen, Z., Lin, J. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 2011, 49, 3250–3257.10.1016/j.carbon.2011.03.051Suche in Google Scholar

64. Sarafraz, H., Minuchehr, A., Alahyarizadeh, G., Rahimi, Z. Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions. Sci. Rep. 2017, 7, 1–12.10.1038/s41598-017-11993-5Suche in Google Scholar PubMed PubMed Central

65. Ghosal, P. S., Gupta, A. K. Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liquids 2017, 225, 137–146.10.1016/j.molliq.2016.11.058Suche in Google Scholar

66. Ayawei, N., Ebelegi, A. N., Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 1–11.10.1155/2017/3039817Suche in Google Scholar

67. Zahakifar, F., Keshtkar, A. R., Talebi, M. Synthesis of sodium alginate (SA)/polyvinyl alcohol (PVA)/polyethylene oxide (PEO)/ZSM-5 zeolite hybrid nanostructure adsorbent by casting method for uranium (VI) adsorption from aqueous solutions. Prog. Nucl. Energy 2021, 134, 103642.10.1016/j.pnucene.2021.103642Suche in Google Scholar

68. Tabatabaeefar, A., Keshtkar, A. R., Talebi, M., Abolghasemi, H. Polyvinyl alcohol/alginate/zeolite Nanohybrid for removal of metals. Chem. Eng. Technol. 2020, 43, 343–354.10.1002/ceat.201900231Suche in Google Scholar

69. Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D., Anousis, I. Thorium and uranium uptake by natural zeolitic materials. Sci. Tot. Environ. 1995, 173, 237–246.10.1016/0048-9697(95)04748-4Suche in Google Scholar

70. Cartwright, A. J., May, C. C., Worsfold, P. J., Keith-Roach, M. J. Characterisation of thorium–ethylenediaminetetraacetic acid and thorium–nitrilotriacetic acid species by electrospray ionisation-mass spectrometry. Anal. Chim. Acta 2007, 590, 125–131.10.1016/j.aca.2007.03.010Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1090).


Received: 2021-08-19
Accepted: 2021-10-29
Published Online: 2021-11-29
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1090/pdf
Button zum nach oben scrollen