New reference materials for trace-levels of actinide elements in plutonium
-
Richard M. Essex
, Lav Tandon
, Amy Gaffney , Cole R. Hexel , Debbie A. Bostick , Lisa M. Colletti , Diana L. Decker , Casey C. Finstad , Joe M. Giaquinto , Elmer Lujan , John D. Partridge , Benjamin D. Roach , John Rolinson , Kyle Samperton , Alice K. Slemmons , Khalil J. Spencer , Floyd E. Stanley , Lisa E. Townsend , Kerri C. Treinen , Ross W. Williams , Christopher G. Worley and Ning Xu
Abstract
Two plutonium oxides were prepared as unique reference materials for measurement of actinide elements present as trace constituents. Each reference material unit is approximately 200 mg of PuO2 powder in a quartz glass bottle. Characterized attributes of the oxides included mass fractions of plutonium, americium, neptunium, and uranium. Isotope-amount ratios were also determined for plutonium and uranium, but neptunium and americium were observed to be monoisotopic 237Np and 241Am. Measurements for characterization and verification of the attributes show that plutonium and trace actinides are homogeneous with the exception of limited heterogeneity for uranium, primarily observed for the 238U isotope. Model purification ages calculated from measured americium and uranium attribute values are consistent with material histories and indicate that these impurities are predominantly due to the decay of plutonium isotopes.
Acknowledgements
Funding for the production, characterization, and verification work at LANL, LLNL and ORNL and project coordination activities at NIST was provided by the United States Department of Homeland Security.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. IAEA. Incidents of nuclear and other radioactive material out of regulatory control: 2020 Fact Sheet. 2020. https://www.iaea.org/sites/default/files/20/02/itdb-factsheet-2020.pdf.Search in Google Scholar
2. IAEA: Nuclear Forensics in Support of Investigations. IAEA Nuclear Security Series No. 2-G (Rev. 1) (2015).Search in Google Scholar
3. Kristo, M. J., Tumey, S. J. The state of nuclear forensics. Nucl. Instrum. Methods Phys. Res. B 2013, 294, 656.10.1016/j.nimb.2012.07.047Search in Google Scholar
4. Keegan, E., Kristo, M. J., Toole, K., Kips, R., Young, E. Nuclear forensics: scientific analysis supporting law enforcement and nuclear security investigations. Anal. Chem. 2016, 88, 1498.10.1021/acs.analchem.5b02915Search in Google Scholar PubMed
5. Moody, K. J. Determination of Plutonium Metal Origins; Lawrence Livermore National Laboratory: Livermore, CA, 1995. UCRL-ID-120253.10.2172/93981Search in Google Scholar
6. Wallenius, M., Peerani, P., Koch, L. Origin determination of plutonium material in nuclear forensics. J. Radioanal. Nucl. Chem. 2000, 246, 317.10.1023/A:1006774524272Search in Google Scholar
7. Wallenius, M., Mayer, K. Age determination of plutonium material in nuclear forensics by thermal ionization mass spectrometry. Fresenius’ J. Anal. Chem. 2000, 366, 234.10.1007/s002160050046Search in Google Scholar PubMed
8. Nygren, U., Ramebäck, H., Nilsson, C. Age determination of plutonium using inductively coupled plasma mass spectrometry. J. Radioanal. Nucl. Chem. 2007, 272, 45.10.1007/s10967-006-6780-9Search in Google Scholar
9. Wallenius, M., Lutzenkirchen, K., Mayer, K., Ray, I., de las Heras, L. A., Betti, M., Cromboom, O., Hild, M., Lynch, B., Nicholl, A., Ottmar, H., Rasmussen, G., Schubert, A., Tamborini, G., Thiele, H., Wagner, W., Walker, C., Zuleger, E. Nuclear forensic investigations with a focus on plutonium. J. Alloys Compd. 2007, 444–445, 57.10.1016/j.jallcom.2006.10.161Search in Google Scholar
10. Schwantes, J. M., Douglas, M., Bonde, S. E., Briggs, J. D., Farmer, O. T., Greenwood, L. R., Lepel, E. A., Orton, C. R., Wacker, J. F., Luksic, A. T. Nuclear archeology in a bottle: evidence of pre-Trinity U.S. weapons activities from a waste burial site. Anal. Chem. 2009, 81, 1297.10.1021/ac802286aSearch in Google Scholar PubMed
11. Byerly, B., Stanley, F. E., Spencer, K. J., Colletti, L. M., Garduno, K., Kuhn, K. J., Lujan, E. J. W., Alexander, M., Porterfield, D. R., Rim, J. H., Schappert, M. F., Thomas, M. R., Townsend, L. E., Xu, N., Tandon, L. Forensic investigation of plutonium metal: a case study of CRM 126. J. Radioanal. Nucl. Chem. 2016, 310, 623.10.1007/s10967-016-4919-xSearch in Google Scholar
12. Leggitt, H., Inn, K., Goldberg, S., Essex, R. M., LaMont, S., Chase, S. Nuclear forensics—metrological basis for legal defensibility. J. Radioanal. Nucl. Chem. 2009, 282, 997.10.1007/s10967-009-0293-2Search in Google Scholar
13. Fitzgerald, R., Inn, K. G. W., Horgan, C. How old is it?—241Pu/241Am nuclear forensic chronology reference materials. J. Radioanal. Nucl. Chem. 2016, 307, 2521.10.1007/s10967-015-4565-8Search in Google Scholar
14. Essex, R. M., Williams, R. W., Treinen, K. C., Hubert, A., Humphrey, M. A., Inglis, J. D., Kinman, W. S., Maassen, J., Penkin, M. V., Steiner, R. E. A highly-enriched 244Pu reference material for nuclear safeguards and nuclear forensics measurements. J. Radioanal. Nucl. Chem. 2020, 324, 257.10.1007/s10967-020-07075-ySearch in Google Scholar
15. Inn, K. G. W., Johnson, C. M.Jr., Oldham, W., Jerome, S., Tandon, L., Schaaff, T., Jones, R., Mackney, D., MacKill, P., Palmer, B., Smith, D., LaMont, S., Griggs, J. The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management. J. Radioanal. Nucl. Chem. 2013, 296, 5.10.1007/s10967-012-1972-ySearch in Google Scholar
16. Inn, K. G. W., LaMont, S., Jerome, S., Essex, R., Johnson, C. M.Jr, Morrison, J., Frechou, C., Branger, T., Dion, H. Roadmap for radioanalytical reference and performance evaluation materials for current and emerging issues. J. Radioanal. Nucl. Chem. 2016, 307, 2529.10.1007/s10967-016-4694-8Search in Google Scholar
17. Mathew, K., Kayzar-Boggs, T., Varga, Z., Gaffney, A., Denton, J., Fulwyler, J., Garduno, K., Gaunt, A., Inglis, J., Keller, R., Kinman, W., Labotka, D., Lujan, E., Maassen, J., Mastren, T., May, I., Mayer, K., Nicholl, A., Ottenfeld, C., Parsons-Davis, T., Porterfield, D., Rim, J., Rolison, J., Stanley, F., Steiner, R., Tandon, L., Thomas, M., Torres, R., Treinen, K., Wallenius, M., Wende, A., Williams, R. W., Wimpenny, J. Intercomparison of the radio-chronometric ages of plutonium-certified reference materials with distinct isotopic compositions. Anal. Chem. 2019, 91, 11643.10.1021/acs.analchem.9b02156Search in Google Scholar
18. New Brunswick Laboratory. CRM 126-A Plutonium Metal Assay and Isotopic Standard; NBL Program Office: Oak Ridge, TN, 2003.Search in Google Scholar
19. Moseley, J. D., Wing, R. O. Properties of Plutonium Dioxide. RFP-503; Dow Chemical Company, Rock Flats, CO, 1965.10.2172/4613823Search in Google Scholar
20. ASTM. C1165 – 17. Standard Test Method for Determining Plutonium by Controlled-Potential Coulometry in H2SO4 at a Platinum Working Electrode; ASTM International: West Conshohocken, PA, 2017.Search in Google Scholar
21. Byerly, B., Kuhn, K., Colletti, L., Foster, L., Keller, R., Lujan, E., Martinez, A., Porterfield, D., Schwartz, D., Spencer, K., Stanley, F., Thomas, M., Townsend, L., Xu, N., Tandon, L. Chemical investigation of three plutonium–beryllium neutron sources. J. Radioanal. Nucl. Chem. 2017, 312, 95.10.1007/s10967-017-5192-3Search in Google Scholar
22. Callis, E. L., Abernathy, R. M. High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int. J. Mass Spectrom. Ion Process. 1991, 103, 93.10.1016/0168-1176(91)80081-WSearch in Google Scholar
23. Reid, A. Simulating decay chains using spreadsheets. Phys. Educ. 2012, 48, 18. https://iopscience.iop.org/article/10.1088/0031-9120/47/1/F08/pdf (accessed Dec, 2019).10.1088/0031-9120/47/1/F08Search in Google Scholar
24. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 5–A. 2010. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Search in Google Scholar
25. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 6–A. 2011. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Search in Google Scholar
26. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 4–A. 2005. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Search in Google Scholar
27. BIPM. Monographie BIPM-5, table of radionuclides. Vol. 3–A. 2006. http://www.nucleide.org/DDEP_WG/DDEPdata.htm (accessed Mar 25, 2020).Search in Google Scholar
28. Wang, M., Audi, G., Wapstra, A. H., Kondev, F. G., MacCormick, M., Xu, X., Pfeiffer, B. The AME2012 atomic mass evaluation (II). Table, graphs, and references. Chin. Phys. C 2012, 36, 1603.10.1088/1674-1137/36/12/003Search in Google Scholar
29. Joint Committee for Guides in Metrology: Evaluation of measurement data – guide to the expression of uncertainty in measurement. JCGM 100, 2008 (E/F), 2008.Search in Google Scholar
30. Taylor, B. N., Kuyatt, C. E. Guideline for Evaluating and Expressing the Uncertainty of NIST Measurement Results; National Institute of Standards and Technology: Gaithersburg, MD, 1994. Technical Note 1297.10.6028/NIST.TN.1297Search in Google Scholar
31. Thompson, M., Ellison, S. L. R. Dark uncertainty. Accred Qual. Assur. 2011, 16, 483.10.1007/s00769-011-0803-0Search in Google Scholar
32. Sturm, M., Richter, S., Aregbe, Y., Wellum, R., Mialle, S., Mayer, K., Prohaska, T. Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J. Radioanal. Nucl. Chem. 2014, 302, 399.10.1007/s10967-014-3294-8Search in Google Scholar
33. International Organization for Standardization: Reference materials – guidance for characterization and assessment of homogeneity and stability. ISO GUIDE 35:2017(E). 2017.Search in Google Scholar
34. International Organization for Standardization: General requirements for the competence of reference material producers, ISO 17034:2016 (E). 2016.Search in Google Scholar
35. Joint Committee for Guides in Metrology: International vocabulary of metrology –basic and general concepts and terms (VIM), JCGM 200. 2012.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections of some neutron-induced reactions in the energy range of 13.82–14.71 MeV
- New reference materials for trace-levels of actinide elements in plutonium
- Adsorption properties and mechanism of uranium by three biomass materials
- Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide
- Review
- Application of response surface method in the separation of radioactive material: a review
- Original Paper
- Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections of some neutron-induced reactions in the energy range of 13.82–14.71 MeV
- New reference materials for trace-levels of actinide elements in plutonium
- Adsorption properties and mechanism of uranium by three biomass materials
- Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide
- Review
- Application of response surface method in the separation of radioactive material: a review
- Original Paper
- Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice