Abstract
This work focuses on tracking peptic ulcer localized in mice. The formation of a [99mTc]dithiocarbamate of famotidine complex at optimum conditions of reaction temperature (37 °C), reaction time (30 min), pH of the reaction mixture (5), amount of substrate (100 µg), amount of reducing agent (tin (II) content, 50 µg), was achieved using radioactive Tc-99m (250–400 MBq), with labelling yield of 98% and high radiochemical purity. The in-vitro stability of [99mTc]dithiocarbamate of famotidine complex was shown to be high in rat serum for up to 8 h. Normal and ulcerated mice were used in biodistribution studies. Famotidine works by blocking histamine-2-receptor antagonists (H2RAs). The high absorption of [99mTc]dithiocarbamate of famotidine complex in stomach in amount of 27.15% injected dose/g organ (ID/g) observed in ulcerated mice for up to 24 h demonstrated its usefulness as a novel radiotracer for stomach imaging.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Howard, J. M., Chremos, A. N., Collen, M. J., McArthur, K. E., Cherner, J. A., Maton, P. N., Ciarleglio, C. A., Cornelius, M. J., Gardner, J. D., Jensen, R. T. Famotidine, a new, potent, longacting histamine H2-receptor antagonist: comparison with cimetidine and ranitidine in the treatment of Zollinger-Ellison syndrome. Gastroenterology 1985, 88, 1026–1033; https://doi.org/10.1016/s0016-5085(85)80024-x.Search in Google Scholar
2. Meskanen, K., Ekelund, H., Laitinen, J., Neuvonen, P. J., Haukka, J., Panula, P., Ekelund, J. A. Randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 472–478; https://doi.org/10.1097/jcp.0b013e3182970490.Search in Google Scholar
3. James, L. P., Marshall, J. D., Heulitt, M. J., Wells, T. G., Letzig, L., Kearns, G. L. Pharmacokinetics and pharmacodynamics of famotidine in children. J. Clin. Pharmacol. 1996, 36, 48–54; https://doi.org/10.1002/j.1552-4604.1996.tb04151.x.Search in Google Scholar PubMed
4. Sanad, M. H., Saleh, G. M., Marzook, F. A. Radioiodination and biological evaluation of nizatidine as a new highly selective radiotracer for peptic ulcer disorder detection. J. Label. Compd. Radiopharm. 2017, 60, 600–607; https://doi.org/10.1002/jlcr.3541.Search in Google Scholar PubMed
5. Sanad, M. H., Salama, D. H., Marzook, F. A. Radioiodinated famotidine as a new highly selective radiotracer for peptic ulcer disorder detection, diagnostic nuclear imaging and biodistribution. Radiochim. Acta 2017, 105, 389–398; https://doi.org/10.1515/ract-2016-2683.Search in Google Scholar
6. Sanad, M. H., Challan, S. B. Radioiodination and biological evaluation of rabeprazole as a peptic ulcer localization radiotracer. Radiochemistry 2017, 59, 307–312; https://doi.org/10.1134/s1066362217030158.Search in Google Scholar
7. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m pantoprazole. Radiochemistry 2013, 55, 341–345; https://doi.org/10.1134/s106636221303017x.Search in Google Scholar
8. Sanad, M. H. Labeling of omeprazole with technetium-99m for diagnosis of stomach. Radiochemistry 2013, 55, 605–609; https://doi.org/10.1134/s1066362213060076.Search in Google Scholar
9. Sanad, M. H., Ibrahim, I. T. Radiodiagnosis of peptic ulcer with technetium-99m labeled rabeprazole. Radiochemistry 2015, 57, 425–430; https://doi.org/10.1134/s1066362215040165.Search in Google Scholar
10. Sanad, M. H., Talaat, H. M. Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole. Radiochemistry 2017, 59, 396–401; https://doi.org/10.1134/s1066362217040129.Search in Google Scholar
11. Sanad, M. H., Safaa, B. C., Fawzy, A. M., Sayed, M. A. A., Ebtisam, A. M. Radioiodination and biological evaluation of cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. Radiochim. Acta 2021, 109, 109–117; https://doi.org/10.1515/ract-2020-0046.Search in Google Scholar
12. Unak, P., Lambrecht, F. Y., Biber, F. Z., Medine, I. E., Teksoz, S. Labeling of famotidine with 99mTc and biodistribution studies on rats. J. Radioanal. Nucl. Chem. 2004, 261, 587–591; https://doi.org/10.1023/b:jrnc.0000037099.75789.29.10.1023/B:JRNC.0000037099.75789.29Search in Google Scholar
13. Amin, A. M., Omar, M. M., Abd‐Elhaliem, S. M., Elshanawany, A. A. Gastric ulcer localization: potential use of 125I‐omeprazole as radiotracer. Radiochemistry 2015, 57, 182–186; https://doi.org/10.1134/s1066362215020113.Search in Google Scholar
14. Ibrahim, I. T., El-Tawoosy, M., Talaat, H. M. Labeling of tannic acid with technetium-99m for diagnosis of stomach ulcer. Int. Sch. Res. Netw. 2011, 2011, 1–6; https://doi.org/10.5402/2011/578570.Search in Google Scholar PubMed PubMed Central
15. Sanad, M. H., Sallam, K. M., Marzook, F. Labeling and biological evaluation of 99mTc-tricarbonyl-chenodiol for hepatobiliary imaging. Radiochemistry 2017, 59, 525–529; https://doi.org/10.1134/s10663622170500149.Search in Google Scholar
16. Song, X., Wang, Y., Zhang, J. Influence of different 99mTc cores on the physicochemical and biodistribution behaviours of 99mTc-labelled complexes of pamidronate dithiocarbamate. J. Radioanal. Nucl. Chem. 2018, 316, 313–319; https://doi.org/10.1007/s10967-018-5727-2.Search in Google Scholar
17. Krishnaveni, G., Sathyannarayana, P. V. V. Simultaneous determination of famotidine and ibuprofen in combined pharmaceutical dosage form by RP-HPLC method. Int. J. Pharm. Bio. Sci. 2013, 4, 655–662.Search in Google Scholar
18. Sanad, M. H., Farouk, N., Fouzy, A. S. M. Radiocomplexation and bioevaluation of 99mTc nitrido-piracetam as a model for brain imaging. Radiochim. Acta 2017, 105, 729–737; https://doi.org/10.1515/ract-2016-2714.Search in Google Scholar
19. Sanad, M. H., Alhussein, A. I. Preparation and biological evaluation of 99mTcN-histamine as a model for brain imaging: in silico study and preclinical evaluation. Radiochim. Acta 2018, 106, 229–238; https://doi.org/10.1515/ract-2017-2804.Search in Google Scholar
20. Sanad, M. H. Novel radiochemical and biological characterization of 99mTc-histamine as a model for brain imaging. J. Anal. Sci. Technol. 2014, 5, 23; https://doi.org/10.1186/s40543-014-0023-4.Search in Google Scholar
21. Xiang, L., Aiqin, W., Qianqian, X., Yu, F., Jianping, L., Huabei, Z., Huaying, B. Synthesis and biological evaluation of fatty acids containing 99mTc-oxo and 99mTc-nitrido for myocardial metabolism imaging. J. Radioanal. Nucl. Chem. 2016, 307, 1438.Search in Google Scholar
22. Duatti, A., Boschi, A., Uccelli, L. Technetium -99m nitrido radiopharmaceuticals with un precedented biological properties. Braz. Arch. Biol. Technol. 2002, 45, 135–142; https://doi.org/10.1590/s1516-89132002000500019.Search in Google Scholar
23. Boschi, A., Uccelli, L., Bolzati, C., Duatti, A., Sabba, N., Moretti, E., Domenico, G. D., Zavattini, G., Refosco, F., Giganti, M. Synthesis and biologic evaluation of monocationic asymmetric 99mTc-nitride heterocomplexes showing high heart uptake and improved imaging properties. J. Nucl. Med. 2003, 44, 806–814.Search in Google Scholar
24. Zhang, J. B., Wang, X. B., Tian, C. J. Synthesis and biodistribution of 99mTcN (PDTC)2 as a potential brain imaging agent. J. Radioanal. Nucl. Chem. 2004, 262, 505–507; https://doi.org/10.1023/b:jrnc.0000046787.02935.e2.10.1023/B:JRNC.0000046787.02935.e2Search in Google Scholar
25. Zhang, J. B., Luo, G., Wang, X. B. Synthesis and biodistribution of a novel 99mTc nitrido dithiocarbamate complex containing ether group as a potential myocardial and brain imaging agent. J. Radioanal. Nucl. Chem. 2009, 279, 783–785; https://doi.org/10.1007/s10967-008-7383-4.Search in Google Scholar
26. Mingxia, Z., Hongyu, N., Man, F., Shilei, L., Jin, C., Chuanmin, Q. Novel [99mTcN]2+ labeled EGFR inhibitors as potential radiotracers for single photon emission computed tomography (SPECT) tumor imaging. Molecules 2014, 19, 5508–5521; https://doi.org/10.3390/molecules19055508.Search in Google Scholar
27. Zhang, J. B., Wang, X. B., Tian, C. J. Synthesis of a bis-(N-butyldithiocarbamato)- nitrido 99mTc complex: a potential new brain imaging agent. J. Radioanal. Nucl. Chem. 2007, 273, 15–17; https://doi.org/10.1007/s10967-007-0703-2.Search in Google Scholar
28. Guleria, M., Ghosh, S., Das, T., Sarma, H. D., Banerjee, S. Preparation and bioevaluation of [99mTc≡N]2+ labeled tetrameric complex of E c(RGDfK)2 as a radiotracer for imaging avb3 integrins in tumors. J. Radioanal. Nucl. Chem. 2016, 309, 923–930.10.1007/s10967-015-4680-6Search in Google Scholar
29. Shah, S. Q., Khan, M. R., Ali, S. M. Radiosynthesis of 99mTc (CO)3-clinafloxacin dithiocarbamate and its biological evaluation as a potential staphylococcus aureus infection radiotracer. Nucl. Med. Mol. Imag. 2011, 45, 248–254; https://doi.org/10.1007/s13139-011-0106-8.Search in Google Scholar
30. Xiang, L., Aiqin, W., Qianqian, X., Yu, F., Jianping, L., Huabei, Z., Huaying, B. Synthesis and biological evaluation of fatty acids containing 99mTc-oxo and 99mTc-nitrido for myocardial metabolism imaging. J. Radioanal. Nucl. Chem. 2016, 307, 1429–1438.10.1007/s10967-015-4232-0Search in Google Scholar
31. Mathur, A., Mallia, M. B., Subramanian, S., Banerjee, S., Kothari, K., Dhotare, B., Sarmad, H. D., Venkatesh, M. 99mTcN complexes of tert-butyl dithiocarbamate and methoxyisobutyl dithiocarbamate as myocardial and brain imaging agents. Nucl. Med. Commun. 2005, 26, 1013–1019; https://doi.org/10.1097/01.mnm.0000183793.51474.2f.Search in Google Scholar
32. Pasqualini, R., Comazzi, V., Bellande, E., Duatti, A., Marrchi, A. A new efficient method for the preparation of 99mTc-radiopharmaceuticals containing the Tc≡N multiple bond. Appl. Radiat. Isot. 1992, 43, 1329–1333; https://doi.org/10.1016/0883-2889(92)90004-x.Search in Google Scholar
33. Sanad, M. H., Rizvi, S. F. A., Farag, A. B. Synthesis, characterization, and bioevaluation of 99mTc nitrido-oxiracetam as a brain imaging model. Radiochim. Acta 2021, 109, 477–483; https://doi.org/10.1515/ract-2021-0003.Search in Google Scholar
34. Borai, E. H., Sanad, M. H., Fouzy, A. S. M. Optimized chromatographic separation and biological evaluation of 99mTc-clarithromycin for infective inflammation diagnosis. Radiochemistry 2016, 58, 84–91; https://doi.org/10.1134/s1066362216010136.Search in Google Scholar
35. Wang, R., Zeng, X., Liu, B., Yi, R., Zhou, X., Mu, J., Zhao, X. Prophylactic effect of Lactobacillus plantarum KSFY06 on HCl/ethanol-induced gastric injury in mice. Food Funct. 2020, 11, 2679–2692; https://doi.org/10.1039/c9fo02474c.Search in Google Scholar PubMed
36. Sanad, M. H. Labeling and biological evaluation of 99mTc-azithromycin for infective inflammation diagnosis. Radiochemistry 2013, 55, 539–544.10.1134/S1066362213050159Search in Google Scholar
37. Sanad, M. H., Sallam, Kh. M., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Label Compd. Radiopharm. 2016, 59, 484–491.10.1002/jlcr.3435Search in Google Scholar PubMed
38. Abdel-Ghaney, I. Y., Sanad, M. H. Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. Radiochemistry 2013, 55, 418–422.10.1134/S1066362213040139Search in Google Scholar
39. Ibrahim, I. T., Sanad, M. H. Radiolabeling and biological evaluation of losartan as a possible cardiac imaging agent. Radiochemistry 2013, 55, 336–340.10.1134/S1066362213030168Search in Google Scholar
40. Motaleb, M. A., Adli, A. S. A., El-Tawoosy, M., Sanad, M. H., AbdAllah, M. An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J. Label Compd. Radiopharm. 2016, 59, 157–163.10.1002/jlcr.3384Search in Google Scholar PubMed
41. Sanad, M. H., El-Bayoumy, A. S. A., Alhussein, A. I. Comparative biological evaluation between 99mTc(CO)3 and 99mTc-Sn(II) complexes of novel quinoline derivative: a promising infection radiotracer. J. Radioanal. Nucl. Chem. 2017, 311, 1–14.10.1007/s10967-016-4945-8Search in Google Scholar
42. Sanad, M. H., Emad, H. B. Comparative biological evaluation between 99mTc tricarbonyl and 99mTc-Sn(II) levosalbutamol as a β2-adrenoceptor agonist. Radiochim. Acta 2015, 103, 879–891.10.1515/ract-2015-2428Search in Google Scholar
43. Sanad, M. H., El-Tawoosy, M. Labeling of ursodeoxycholic acid with Technetium-99m for hepatobiliary imaging. J. Radioanal. Nucl. Chem. 2013, 298, 1105–1109.10.1007/s10967-013-2512-0Search in Google Scholar
44. Amin, A. M., Sanad, M. H., Abd-Elhaliem, S. M. Radiochemical and biological characterization of 99mTc-piracetam for brain imaging. Radiochemistry 2013, 55, 624–628.10.1134/S1066362213060118Search in Google Scholar
45. El-Kawy, O., Sanad, M. H., Marzook, F. 99mTc-Mesalamine as potential agent for diagnosis and monitoring of ulcerative colitis: labelling, characterisation and biological evaluation. J. Radioanal. Nucl. Chem. 2016, 308, 279–286.10.1007/s10967-015-4338-4Search in Google Scholar
46. Sanad, M. H., Amin, A. M. Optimization of labeling conditions and bioevalution of 99mTc-meloxicam for inflammation imaging. Radiochemistry 2013, 55, 521–526.10.1134/S1066362213050123Search in Google Scholar
47. Sanad, M. H., Sakr, T. M., Walaa, H. A. A., Marzook, E. A. In silico study and biological evaluation of 99mTc-tricabonyl oxiracetam as a selective imaging probe for AMPA receptors J. Radioanal. Nucl. Chem., 2017, 314, 1505–1515.10.1007/s10967-016-5120-ySearch in Google Scholar
48. Sanad, M. H., Farag, A. B., Dina, H. S. J. Radioiodination and bioevaluation of rolipram as a tracer for brain imaging: in silico study, molecular modeling and gamma scintigraphy. J. Label Compd. Radiopharm. 2018, 61, 501–508.10.1002/jlcr.3614Search in Google Scholar PubMed
49. Sanad, M. H., Abelrahman, M. A., Marzook, F. M. A. Radioiodination and biological evaluation of levalbuterol as a new selective radiotracer: a β2-adrenoceptor agonist. Radiochim. Acta 2016, 104, 345–353.10.1515/ract-2015-2518Search in Google Scholar
50. Sanad, M. H., Marzook, E. A., Challan, S. B. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta 2018,106, 329–336.10.1515/ract-2017-2830Search in Google Scholar
51. Motaleb, M. A., Selim, A. A., El-Tawoosy, M. Sanad, M. H., El-Hashash, M. A. Synthesis, radiolabeling and biological distribution of a new dioxime derivative as a potential tumor imaging agent. J. Radioanal. Nucl. Chem.. 2017, 314, 1517–1522.10.1007/s10967-017-5310-2Search in Google Scholar
52. Moustapha, M. E., Motaleb, M. A. & Sanad, M. H. Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptor-mediated cardiac imaging. J. Radioanal. Nucl. Chem. 2016, 309, 511–516.10.1007/s10967-015-4622-3Search in Google Scholar
53. Sanad, M. H., Ibrahim, A. A., Talaat, H. M. Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(Furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical. J. Radioanal.Nucl. Chem. 2018, 315, 57–63.10.1007/s10967-017-5617-zSearch in Google Scholar
54. Sanad, M. H., Emad, H. B. Performance characteristics of biodistribution of 99mTc-cefprozil for in-vivo infection imaging. J. Anal. Sci. Technol. 2014, 5, 32.10.1186/s40543-014-0032-3Search in Google Scholar
55. Sanad, H. M., Ibrahim A. A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. Radiochim. Acta 2018, 106, 843–850.10.1515/ract-2018-2960Search in Google Scholar
56. Safaa, B. C., Fawzy, A. M., Ayman, M. Synthesis of radioiodinated carnosine for hepatotoxicity imaging induced by carbon tetrachloride and its biological assessment in rats. Radiochim. Acta 2021, 108, 397–408.10.1515/ract-2019-3162Search in Google Scholar
57. Sanad, M. H., Sallam, K. M., Marzook, F. Labeling and biological evaluation of 99mTc-tricarbonyl-chenodiol for hepatobiliary imaging. Radiochemistry 2017, 59, 525–529.10.1134/S10663622170500149Search in Google Scholar
58. Sanad, M. H., Fouzy, A. S. M., Sobhy, H. M., Hathout, A. S., Hussain, O. A. Tracing the protective activity of Lactobacillus plantarum using technetium-99m-labeled zearalenone for organ toxicity. Int. J. Radiat. Biol. 2018, 94, 1151–1158.10.1080/09553002.2019.1524990Search in Google Scholar PubMed
59. Sanad, M. H., Farag, A. B., Saleh, G. M. Radiosynthesis and biological evaluation of 188Re-5,10,15,20–Tetra (4-pyridyl)-21H,23H-porphyrin complex as a tumor-targeting agent. Radiochemistry 2019, 61, 347–351.10.1134/S106636221903010XSearch in Google Scholar
60. Sanad, M. H., Marzook, F. A., Abd-Elhaliem, S. M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging. Radiochim. Acta 2021, 109, 41–46.10.1515/ract-2020-0025Search in Google Scholar
61. Elham, M. H., Eyssa, H. M., Abd, El-Megeed A. A. Effect of nanofiller on the ageing of rubber seal materials under gamma irradiation. J. Compos. Mater. 2019, 53, 2065.10.1177/0021998318819178Search in Google Scholar
62. Eyssa, H. M., Dalia, E. A., Mervat, A. M. Abo-State. Application of polyurethane/gamma-irradiated carbon nanotubes composites as antifouling coat. Polym. Compos. 2018, 39, E1196.10.1002/pc.24718Search in Google Scholar
63. Sanad, M. H., Rizvi, F. A., Kumar, R. R. Radiosynthesis and bioevaluation of ranitidine as highly selective radiotracer for peptic ulcer disorder detection. Radiochemistry 2020, 62, 119–124.10.1134/S1066362220010154Search in Google Scholar
64. Eyssa, H. M., Mohamed, W. S., Mai M El-Zayat, M. M. Irradiated rubber composite with nano and micro fillers for mining rock application. Radiochimica Acta 2019, 107, 737–753.10.1515/ract-2018-2989Search in Google Scholar
65. Zaky, M. M., Eyssa, H. M., Sadek, R. F. Improvement of the magnesium battery electrolyte properties through gamma irradiation of nano polymer electrolytes doped with magnesium oxide nanoparticles. Journal of Vinyl and Additive Technology 2019, 25, 243–254.10.1002/vnl.21683Search in Google Scholar
66. Eyssa, H. M., Sawires, S. G., Senna, M. M. Gamma irradiation of polyethylene nanocomposites for food packaging applications against stored-product insect pests. Journal of Vinyl and Additive Technology 2019, 25, E120–E129.10.1002/vnl.21660Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections of some neutron-induced reactions in the energy range of 13.82–14.71 MeV
- New reference materials for trace-levels of actinide elements in plutonium
- Adsorption properties and mechanism of uranium by three biomass materials
- Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide
- Review
- Application of response surface method in the separation of radioactive material: a review
- Original Paper
- Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice
Articles in the same Issue
- Frontmatter
- Original Papers
- Activation cross sections of some neutron-induced reactions in the energy range of 13.82–14.71 MeV
- New reference materials for trace-levels of actinide elements in plutonium
- Adsorption properties and mechanism of uranium by three biomass materials
- Synthesis of “(aminomethyl)phosphonic acid-functionalized graphene oxide”, and comparison of its adsorption properties for thorium(IV) ion, with plain graphene oxide
- Review
- Application of response surface method in the separation of radioactive material: a review
- Original Paper
- Preparation, characterization, and bioevaluation of 99mTc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice