Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
-
Md. Ahosan Habib
, Triyono Basuki , Sunao Miyashita , Wiseman Bekelesi , Satoru Nakashima , Khamphe Phoungthong , Rahat Khan, Md. Bazlar Rashid
, Abu Reza Md. Towfiqul Islam und Kuaanan Techato
Abstract
Coal-fly-ash is one of the major byproducts of coal-based power plant in which naturally occurring radioactive materials (NORMs) are drastically enriched compared to those of feed coals. Thus, improper management of fly-ash may introduce additional radioactivity to the surrounding environment and cause radiological risk. So, in order to study the distribution of radionuclides in soil around a coal-based power plant and to evaluate their radiological risk, soil, coal and fly-ash samples were analyzed by using a HPGe detector for U-238, Ra-226, Th-232 and K-40 radioactivity concentrations. Furthermore, soil minerals were also studied by X-ray diffractometer to assess the mineralogical provenance of the radionuclides. Mean radioactivity concentrations (in Bq·kg−1) of U-238, Ra-226, Th-232 and K-40 in soil samples are 102.9±41.4, 63.6±7.4, 103.4±13.9 and 494.2±107.5, respectively which are comparatively higher than the typical world mean value. Elevated levels of radioactivity are likely due to the presence of illite, kaolinite, monazite, rutile and zircon minerals in the soil samples rather than technogenic contributions from the power plant. Furthermore, mean soil contamination factor (CF) are close to unity and mean pollution load index (PLI) is below unity while the average radium equivalent activity (Raeq in Bq·kg−1), external hazard index (Hex), absorbed γ dose rate (D in nGyh−1), annual effective dose rate (E in mSv·y−1) and excess lifetime cancer risk (ELCR in Sv−1) are 249.5±21.7, 0.67±0.06, 114.2±9.4, 0.20±0.02, 4.9×10−4±0.4×10−4, respectively, which are within the permissible limit. Thus, in terms of radioactivity concentrations and associated environmental and radiological indices, the effect of the power plant is insignificant.
Acknowledgements
The authors would like to acknowledge the Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC) (Contract No.: THE-AC014/2016), funds for Doctor of Philosophy programme in Sustainable Energy Management, Faculty of Environmental Management, Graduate School, Prince of Songkla University, Thailand, and the authority of Geological Survey of Bangladesh (GSB), Bangladesh for all other forms of support for this study.
Conflict of interest: There is no conflict of interest.
References
1. Parial, K., Guin, R., Agrahari, S., Sengupta, D.: Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal, India. J. Radioanal. Nucl. Chem. 307(1), 533 (2016).10.1007/s10967-015-4152-zSuche in Google Scholar
2. UNSCEAR: Sources and effects of ionizing radiation; United Nations. Report to the General Assembly, with Scientific Annexes. United Nations (A/55/46), New York (2000).Suche in Google Scholar
3. Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., Onjia, A.: Trace element distribution in surface soils from a coal burning power production area: a case study from the largest power plant site in Serbia. Catena 104, 288 (2013).10.1016/j.catena.2012.12.004Suche in Google Scholar
4. Siegel, M. D., Bryan, C. R.: Radioactivity, geochemistry, and health. In: H. D. Holland, K. K. Turekian (Eds.), Treatise on Geochemistry (2014), 2nded. Chapter 11.6, Elsevier Ltd., Oxford, UK, p. 191.10.1016/B978-0-08-095975-7.00906-2Suche in Google Scholar
5. Bhangare, R. C., Tiwari, M., Ajmal, P. Y., Sahu, S. K., Pandit, G. G.: Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J. Radioanal. Nucl. Chem. 300(1), 17 (2014).10.1007/s10967-014-2942-3Suche in Google Scholar
6. Charro, E., Pardo, R., Peña, V.: Chemometric interpretation of vertical profiles of radionuclides in soils near a Spanish coal-fired power plant. Chemosphere 90(2), 488 (2013).10.1016/j.chemosphere.2012.08.008Suche in Google Scholar PubMed
7. Papaefthymiou, H. V., Manousakas, M., Fouskas, A., Siavalas, G.: Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in megalopolis basin, Greece. Radiat. Prot. Dosim. 156(1), 49 (2013).10.1093/rpd/nct037Suche in Google Scholar PubMed
8. Mahur, A. K., Gupta, M., Varshney, R., Sonkawade, R. G., Verma, K. D., Prasad, R.: Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of national thermal power corporation, Dadri (U.P.), India. Radiat. Meas. 50, 130 (2013).10.1016/j.radmeas.2012.09.008Suche in Google Scholar
9. Coles, D. G., Ragaini, R. C., Ondov, J. M.: Behavior of natural radionuclides in western coal-fired power plants. Environ. Sci. Technol. 12(4), 442 (1978).10.1021/es60140a007Suche in Google Scholar
10. Al-Hamarneh, I. F., Alkhomashi, N., Almasoud, F. I.: Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J. Environ. Radioact. 160, 1 (2016).10.1016/j.jenvrad.2016.04.012Suche in Google Scholar PubMed
11. Dai, L., Wei, H., Wang, L.: Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environ. Res. 104(2), 201 (2007).10.1016/j.envres.2006.11.005Suche in Google Scholar PubMed
12. Halim, M. A., Majumder, R. K., Zaman, M. N.: Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 8(6), 3391 (2015).10.1007/s12517-014-1480-1Suche in Google Scholar
13. Nenadović, S., Nenadović, M., Kljajević, L., Vukanac, I., Poznanović, M., Mihajlović-Radosavljević, A., Pavlović, V.: Vertical distribution of natural radionuclides in soil: assessment of external exposure of population in cultivated and undisturbed areas. Sci. Total Environ. 429, 309 (2012).10.1016/j.scitotenv.2012.04.054Suche in Google Scholar
14. Eisenbud, M., Petrow, H. G.: Radioactivity in the atmospheric effluents of power plants that use fossil fuels. Science 144(3616), 288 (1964).10.1126/science.144.3616.288Suche in Google Scholar
15. Ganatsios, S. S., Tsikritzis, L. I., Duliu, O. G., Sawidis, T. D.: Natural 228Ra, 226Ra, 40K, and artificial 137Cs radionuclides distribution in soil in areas of lignite power plants of Western Macedonia. J. Trace Microprobe Tech. 19(2), 259 (2001).10.1081/TMA-100002215Suche in Google Scholar
16. Charro, E., Pena, V.: Environmental impact of natural radionuclides from a coal-fired power plant in Spain. Radiat. Prot. Dosim. 153(4), 485 (2013).10.1093/rpd/ncs126Suche in Google Scholar
17. Janković, M. M., Rajačić, M. M., Todorović, D. J., Sarap, N. B.: Study of radioactivity in environment around power plants tent a and Kolubara due to coal burning for 2015. 1, 84 (2016).10.21175/RadProc.2016.20Suche in Google Scholar
18. Bem, H., Wieczorkowski, P., Budzanowski, M.: Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland. J. Environ. Radioact. 61(2), 191 (2002).10.1016/S0265-931X(01)00126-6Suche in Google Scholar
19. Flues, M., Moraes, V., Mazzilli, B. P.: The influence of a coal-fired power plant operation on radionuclide concentrations in soil. J. Environ. Radioact. 63(3), 285 (2002).10.1016/S0265-931X(02)00035-8Suche in Google Scholar
20. Papp, Z., Dezső, Z., Daróczy, S.: Significant radioactive contamination of soil around a coal-fired thermal power plant. J. Environ. Radioact. 59(2), 191 (2002).10.1016/S0265-931X(01)00071-6Suche in Google Scholar
21. Gür, F., Yaprak, G.: Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity. J. Env. Sci. Heal. A 45(14), 1900 (2010).10.1080/10934529.2010.520608Suche in Google Scholar PubMed
22. Papastefanou, C.: Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. J. Environ. Radioact. 101(3), 191 (2010).10.1016/j.jenvrad.2009.11.006Suche in Google Scholar PubMed
23. Lu, X., Zhao, C., Chen, C., Liu, W.: Radioactivity level of soil around Baqiao coal-fired power plant in China. Radiat. Phys. Chem. 81(12), 1827 (2012).10.1016/j.radphyschem.2012.07.013Suche in Google Scholar
24. Amin, Y. M., Uddin Khandaker, M., Shyen, A. K. S. S., Mahat, R. H., Nor, R. M., Bradley, D. A.: Radionuclide emissions from a coal-fired power plant. Appl. Radiat. Isot. 80, 109 (2013).10.1016/j.apradiso.2013.06.014Suche in Google Scholar
25. Lu, X., Liu, W., Zhao, C., Chen, C.: Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China. J. Radioanal. Nucl. Chem. 295(3), 1845 (2013).10.1007/s10967-012-2241-9Suche in Google Scholar
26. Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., Gajić, B., Miljanić, Š.: Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ. Sci. Pollut. Res. 22(13), 10317 (2015).10.1007/s11356-014-3888-2Suche in Google Scholar
27. Liu, G., Luo, Q., Ding, M., Feng, J.: Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China. Environ. Monit. Assess. 187(6), 356 (2015).10.1007/s10661-015-4501-ySuche in Google Scholar
28. Gören, E., Turhan, Ş., Kurnaz, A., Garad, A. M. K. K., Duran, C., Uğur, F. A., Yeğingil, Z.: Environmental evaluation of natural radioactivity in soil near a lignite-burning power plant in Turkey. Appl. Radiat. Isot. 129, 13 (2017).10.1016/j.apradiso.2017.07.059Suche in Google Scholar
29. Powercell.: Annual report (2017). Power Division, Ministry of Power, Energy and Mineral Recourses, Bangladesh, (https://mpemr.gov.bd/energy-mineral/).Suche in Google Scholar
30. Bangladesh Bureau of Statistics (BBS): Dinajpiur District Statistics (2011). Statistics & Informatics Division, Ministry of Planning, Bangladesh. (http://www.bbs.gov.bd/).Suche in Google Scholar
31. Alam, M.: Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69(C), 125 (1989).10.1016/0031-0182(89)90159-4Suche in Google Scholar
32. Alam, M. K., Hasan, A. K. M. S., Khan, M. R., Whitney, J. W.: Geological Map of Bangladesh. Scales 1:1,000,000. Geological Survey of Bangladesh, Dhaka (1990).Suche in Google Scholar
33. Farhaduzzaman, M., Abdullah, W. H., Islam, M. A., Hasiah, W., Islam, A.: Petrographic characteristics and palaeoenvironment of the Permian coal resources of the Barapukuria and Dighipara basins, Bangladesh. J. Asian Earth Sci. 64, 272 (2013).10.1016/j.jseaes.2012.12.017Suche in Google Scholar
34. Bakr, M. A., Rahman, Q. M. A., Islam, M. M., Islam, M. K., Uddin, M. N., Resan, S. A., Haider, M. J., Islam, M. S., Ali, M. W., Choudhury, M. E. A., Mannan, K. M., Anam, A. N. M. H.: Geology and coal deposit of Barapukuria Basin, Dinajpur district, Bangladesh (1996). 8(1), Records of the Geological Survey of Bangladesh, Government of the People’s Republic of Bangladesh.Suche in Google Scholar
35. IAEA.: Soil sampling for environmental contaminants. IAEA-TECDOC-1415, International Atomic Energy Agency, Vienna, Austria (2004).Suche in Google Scholar
36. Walkley, A., Black, I. A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1), 29 (1934).10.1097/00010694-193401000-00003Suche in Google Scholar
37. Klute, A.: Methods of Soil Analysis. Part 1 – Physical and Mineralogical Methods, 2nd ed. American Society of Agronomy, Madison, Wis. (1986).10.2136/sssabookser5.1.2edSuche in Google Scholar
38. Bowles, J. E.: Engineering Properties of Soils and Their Measurement, 4th ed. McGraw-Hill, New York (1992).Suche in Google Scholar
39. IAEA.: Measurement and Calculation of Radon Releases from NORM Residues. Technical Reports Series 474, International Atomic Energy Agency, Vienna, Austria (2013).Suche in Google Scholar
40. L’Annunziata, Michael, F.: Handbook of Radioactivity Analysis, 2nd ed. Elsevier Science, Amsterdam (2014).Suche in Google Scholar
41. IAEA.: Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. IAEA Technical Report Series 419 1363, International Atomic Energy Agency, Vienna, Austria (2003).Suche in Google Scholar
42. Mange, M. A., Maurer, H.: Heavy Minerals in Colour, 1st ed. Dordrecht: Springer Netherlands: Imprint: Springer (1992).10.1007/978-94-011-2308-2Suche in Google Scholar
43. Liu, G., Vassilev, S. V., Gao, L., Zheng, L., Peng, Z.: Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Convers. Manag. 46(13–14), 2001 (2005).10.1016/j.enconman.2004.11.002Suche in Google Scholar
44. Oliveira, M. L. S., Ward, C. R., French, D., Hower, J. C., Querol, X., Silva, L. F. O.: Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 94, 314 (2012).10.1016/j.coal.2011.10.004Suche in Google Scholar
45. Hakanson, L.: An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8), 975 (1980).10.1016/0043-1354(80)90143-8Suche in Google Scholar
46. Tomlinson, D. L., Wilson, J. G., Harris, C. R., Jeffrey, D. W.: Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländ. Meeresuntersuchungen 33(1), 566 (1980).10.1007/BF02414780Suche in Google Scholar
47. Mohiuddin, K. M., Ogawa, Y., Zakir, H. M., Otomo, K., Shikazono, N.: Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8(4), 723 (2011).10.1007/BF03326257Suche in Google Scholar
48. Beretka, J., Mathew, P. J.: Natural radioactivity of Australian building materials, industrial wastes and by-products. Heal. Phys. 48(1), 87 (1985).10.1097/00004032-198501000-00007Suche in Google Scholar
49. Krieger, R.: Radioactivity of construction materials. Betonwerk Fertigteil Techn. 47(468), (1981).Suche in Google Scholar
50. ICRP.: Recommendations of the International Commission on Radiological Protection (1990). 21(1–3), publication 60.Suche in Google Scholar
51. Bowen, H. J. M.: Environmental Chemistry of the Elements, Academic Press, London, New York (1979).Suche in Google Scholar
52. Rudnick, R. L., Gao, S.: Composition of the Continental Crust. Treatise on Geochemistry, 2nd ed., p. 1 (Chapter 4). Elsevier, Amsterdam, Netherlands; Oxford, England; Waltham, Massachusetts (2014).10.1016/B978-0-08-095975-7.00301-6Suche in Google Scholar
53. Carini, F.: Radionuclide transfer from soil to fruit. J. Environ. Radioact. 52(2), 237 (2001).10.1016/S0265-931X(00)00035-7Suche in Google Scholar
54. Baize, D.: Soil Science Analyses: A Guide to Current Use. John Wiley, Chichester, New York (1993).Suche in Google Scholar
55. Rashed-Nizam, Q. M., Rahman, M. M., Kamal, M., Chowdhury, M. I.: Assessment of radionuclides in the soil of residential areas of the Chittagong metropolitan city, Bangladesh and evaluation of associated radiological risk. J. Radiat. Res. 56(1), 22 (2015).10.1093/jrr/rru073Suche in Google Scholar PubMed PubMed Central
56. Hamid, B. N., Chowdhury, M. I., Alam, M. N., Islam, M. N.: Study of natural radionuclide concentrations in an area of elevated radiation background in the northern districts of Bangladesh. Radiat. Prot. Dosim. 98(2), 227 (2002).10.1093/oxfordjournals.rpd.a006714Suche in Google Scholar
57. Mishra, U. C. Ã.: Environmental impact of coal industry and thermal power plants in India. J. Environ. Radioact. 72(1–2), 35 (2004).10.1016/S0265-931X(03)00183-8Suche in Google Scholar
58. Flues, M., Camargo, I. M. C., Figueiredo Filho, P. M., Silva, P. S. C., Mazzilli, B. P.: Evaluation of radionuclides concentration in Brazilian coals. Fuel, 86(5–6), 807 (2007).10.1016/j.fuel.2006.09.013Suche in Google Scholar
59. Cevik, U., Damla, N., Koz, B., Kaya, S.: Radiological Characterization around the Afsin-Elbistan coal-fired power plant in Turkey. Energy Fuels 22(1), 428 (2008).10.1021/ef700374uSuche in Google Scholar
60. Chowdhury, M. I., Kamal, M., Alam, M. N., Yeasmin, S., Mostafa, M. N.: Distribution of naturally occurring radionuclides in soils of the southern districts of Bangladesh. Radiat. Prot. Dosim. 118(1), 126 (2006).10.1093/rpd/nci335Suche in Google Scholar
61. Cevik, U., Damla, N., Nezir, S.: Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel 86(16), 2509 (2007).10.1016/j.fuel.2007.02.013Suche in Google Scholar
62. Sultana, M. S., Muramatsu, Y., Yoshida, S.: Levels of lanthanides and natural radionuclides in the uncultivated soils near industrial area of Bangladesh. Int. J. Environ. Anal. Chem. 83(5), 375 (2003).10.1080/0306731031000104759Suche in Google Scholar
63. Khan, R., Parvez, M. S., Tamim, U., Das, S., Islam, M. A, Naher, K., Khan, M. H. R., Nahid, F., Hossain, S. M.: Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim. Acta 106(6), 1 (2018).10.1515/ract-2017-2867Suche in Google Scholar
64. Galbraith, J. H., Saunders, D. F.: Rock classification by characteristics of aerial gamma-ray measurements. J. Geochemical Explor. 18(1), 49 (1983).10.1016/0375-6742(83)90080-8Suche in Google Scholar
65. Cicek, A., Koparal, A. S.: Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilekthermal power plant. Chemosphere 57(8), 1031 (2004).10.1016/j.chemosphere.2004.07.038Suche in Google Scholar PubMed
66. Vuković, Ž., Mandić, M., Vuković, D.: Natural radioactivity of ground waters and soil in the vicinity of the ash repository of the coal-fired power plant “Nikola Tesla” A – Obrenovac (Yugoslavia). J. Environ. Radioact. 33(1), 41 (1996).10.1016/0265-931X(95)00067-KSuche in Google Scholar
67. Tsikritzis, L. I., Ganatsios, S. S., Duliu, O. G., Kavouridis, C. V., Sawidis, T. D.: Trace elements distribution in soil in areas of lignite power plants of western Macedonia. J. Trace Microprobe Tech. 20(2), 269 (2002).10.1081/TMA-120003729Suche in Google Scholar
68. Navas, A., Soto, J., Machín, J.: 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl. Radiat. Isot. 57(4), 579 (2002).10.1016/S0969-8043(02)00131-8Suche in Google Scholar
69. Foth, H. D.: Soils and Mineral Nutrition of Plants. Fundamentals of Soil Science, 7th ed. Wiley, New York (1984).Suche in Google Scholar
70. Kabata-pendias, A., Henryk, P.: Trace Elements in Soils and Plants, 3rd ed. BocaCRC Press, Raton, Fla.; London (2001).10.1201/9781420039900Suche in Google Scholar
71. Belivermis, M., Kiliç, Ö., Çotuk, Y., Topcuoǧlu, S.: The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ. Monit. Assess. 163(1–4), 15 (2010).10.1007/s10661-009-0812-1Suche in Google Scholar
72. Rachkova, N. G., Shuktomova, I. I., Taskaev, A. I.: The state of natural radionuclides of uranium, radium, and thorium in soils. Eurasian Soil Sci. 43(6), 651 (2010).10.1134/S1064229310060050Suche in Google Scholar
73. Navas, A., Gaspar, L., López-Vicente, M., MacHín, J.: Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat. Meas. 46(2), 261 (2011).10.1016/j.radmeas.2010.11.008Suche in Google Scholar
74. Yoshida, S., Muramatsu, Y., Tagami, K., Uchida, S.: Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ. Int. 24(3), 275 (1998).10.1016/S0160-4120(98)00006-3Suche in Google Scholar
75. Aftabuzzaman, M., Kabir, S., Islam, M. K., Alam, M. S.: Clay mineralogy of the pleistocene soil horizon in Barind Tract, Bangladesh. J. Geo. Soc. India 81(5), 677 (2013).10.1007/s12594-013-0089-4Suche in Google Scholar
76. Finkelman, R. B., Palmer, C. A., Kolker, A., Mroczkowski, S. J.: Quantifying the modes of occurrence of elements in coal. In: Prospects for Coal Science in the 21st Century, Proceeding of the 10th International Conference on Coal Science. Sci. Technol. Press, Shanxi (1999), p. 21.Suche in Google Scholar
77. Khan, R., Rouf, M. A., Das, S., Tamim, U., Naher, K., Podder, J., Hossain, S. M.: Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar beach of Bangladesh. Reg. Stud. Mar. Sci. 16, 171 (2017).10.1016/j.rsma.2017.09.003Suche in Google Scholar
78. Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4thed. Taylor and Francis. CRC Press, Boca Raton, FL (2010).10.1201/b10158Suche in Google Scholar
79. Manigandan, P. K., Shekar, B. C.: Evaluation of radionuclides in the terrestrial environment of Western Ghats. J. Radiat. Res. Appl. Sci. 7(3), 310 (2014).10.1016/j.jrras.2014.04.001Suche in Google Scholar
80. Alam, M. N., Chowdhury, M. I., Kamal, M., Ghose, S., Islam, M. N., Mustafa, M. N., Miah, M. M. H., Ansary, M. M.: The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh, J. Environ. Radioact. 46(2), 243 (1999).10.1016/S0265-931X(98)00143-XSuche in Google Scholar
81. Yang, Y., Wu, X., Jiang, Z., Wang, W., Lu, J., Lin, J., Wang, L., Hsia, Y.: Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat. Isot. 63(2), 255 (2005).10.1016/j.apradiso.2005.02.011Suche in Google Scholar PubMed
82. Charro, E., Pardo, R., Pena, V., Peña, V.: Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain. J. Environ. Radioact. 124, 84 (2013).10.1016/j.jenvrad.2013.04.011Suche in Google Scholar PubMed
83. Papaefthymiou, H. V., Chourdakis, G., Vakalas, J.: Natural radionuclides content and associated dose rates in fine-grained sediments from Patras-Rion sub-basins, Greece. Radiat. Prot. Dosim. 143(1), 117 (2011).10.1093/rpd/ncq345Suche in Google Scholar PubMed
84. Khan, R., Shirai, N., Ebihara, M.: Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances. Earth Planet. Sci. Lett. 422, 18 (2015).10.1016/j.epsl.2015.04.008Suche in Google Scholar
85. Tamim, U., Khan, R., Jolly, Y. N., Fatema, K., Das, S., Naher, K., Islam, M. A., Islam, S. M. A., Hossain, S. M.: Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere 155, 509 (2016).10.1016/j.chemosphere.2016.04.099Suche in Google Scholar PubMed
86. Papaefthymiou, H. V., Chourdakis, G., Vakalas, J.: Note natural radionuclides content and associated dose rates in fine-grained sediments from Patras-rion. Radiat. Prot. Dosim. 143(1), 117 (2017).10.1093/rpd/ncq345Suche in Google Scholar
87. UNSCEAR.: Sources, and Effects of Ionizing Radiations, Annex B: Exposures of the public and workers from various sources of radiation. UNSCEAR 2008, Report to the General Assembly, with annexes, vol. 1, United Nations, New York, USA (2010). http://www.unscear.org.Suche in Google Scholar
88. Turhan, Ş., Gören, E., Uğur, F. A., Karataşlı, M., Yeğingil, Z.: Study of the radioactivity in environmental soil samples from Eastern Anatolia Region of Turkey. Radiochim. Acta 106(2), 161 (2018).10.1515/ract-2017-2845Suche in Google Scholar
89. Guidotti, L., Carini, F., Rossi, R., Gatti, M., Cenci, R. M., Beone, G. M.: Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy. J. Environ. Radioact. 142, 36 (2015).10.1016/j.jenvrad.2015.01.010Suche in Google Scholar PubMed
90. Aközcan, S., Külahcı, F., Mercan, Y.: A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: spatial distribution modeling. J. Hazard. Mater. 353, 476 (2018).10.1016/j.jhazmat.2018.04.042Suche in Google Scholar
91. IAEA.: International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources. Safety Series No. 115, International Atomic Energy Agency, Vienna, Austria (1996).Suche in Google Scholar
92. Rosner, G., Bunzl, K., Hötzl, H., Winkler, R.: Low level measurements of natural radionuclides in soil samples around a coal-fired power plant. Nucl. Instr. Meth. Phy. Res. 223(2–3), 585 (1984).10.1016/0167-5087(84)90714-2Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects