Home Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
Article
Licensed
Unlicensed Requires Authentication

Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging

  • Nazila Gholipour , Mehdi Akhlaghi , Amin Mokhtari Kheirabadi , Mahdi Fasihi Ramandi , Ali Farashahi , Davood Beiki and Amir R. Jalilian EMAIL logo
Published/Copyright: February 28, 2019

Abstract

To develop a possible PET blood pool imaging agent, a series 68Ga-dextran carboxylate derivatives were prepared. Dextran carboxylates with different degree of oxidations (DO) were prepared through stepwise dextran oxidation using NaIO4 and CH3COOOH. The products were characterized by FT-IR and GPC, followed by solubility and toxicity tests on Hella cells (viability=98.6, 97.4 and 95.6% for 3 dextran carboxylates with DOs: 8.3, 24.6 and 39.8%, respectively. The products were labeled with 68Ga (radiochemical purity>98%; ITLC) followed by stability tests in final solution as well as in presence of cycteine and human serum. Two stable tracers (DOs; 24.6 and 39.8%) were adminstered intravenously into wild type rat tail vein separately demonstrating suitable retention in circulation as expected from blood pool imaging agents. Liver and spleen also contained activities. The major excretion was through urinary pathway esp. for derivative with DO. 39.8%. Unlike 68Ga-dextran, lungs showed lower uptake. The dextran carboxylate with the highest 39.8% showed the best characteristics for a blood pool agent, though more studies including PET imaging in larger mammals are required.

Award Identifier / Grant number: 94-02-58-29793

Funding statement: This research has been supported by Tehran University of Medical Sciences (TUMS), Funder Id: http://dx.doi.org/10.13039/501100004484, grant 94-02-58-29793.

References

1. Mossine, A. V., Thompson, S., Brooks, A. F., Sowa, A. R., Miller, J. M., Scott, P. J.: Fluorine-18 patents (2009–2015). Part 2: new radiochemistry. Pharm. Pat. Anal. 5(5), 319 (2016).10.4155/ppa-2016-0028Search in Google Scholar PubMed

2. Follacchio, G. A., De Feo, M. S., De Vincentis, G., Monteleone, F., Liberatore, M.: Radiopharmaceuticals labelled with copper radionuclides: clinical results in human beings. Curr. Radiopharm. 11(1), 22 (2018).10.2174/1874471011666171211161851Search in Google Scholar PubMed

3. van Es, S. C., Brouwers, A. H., Mahesh, S. V. K., Leliveld-Kors, A. M., de Jong, I. J., Lub de Hooge M. N., de Vries, E. G. E., Gietema, J. A., Oosting, S. F.: 89Zr-Bevacizumab PET: potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J. Nucl. Med. 58, 905 (2017).10.2967/jnumed.116.183475Search in Google Scholar PubMed

4. Brasse, D., Nonat, A.: Radiometals: towards a new success story in nuclear imaging? Dalton Trans. 44, 4845 (2015).10.1039/C4DT02911ASearch in Google Scholar PubMed

5. Fani, M., André, J. P., Maecke, H. R.: 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media. Mol. Imaging. 3, 53 (2008).10.1002/cmmi.232Search in Google Scholar

6. Front, D., Israel, O., Groshar, D., Weininger, J.: Technetium-99m-labeled red blood cell imaging. Semin. Nucl. Med. 14, 226 (1984).10.1016/S0001-2998(84)80017-3Search in Google Scholar PubMed

7. Henze, E., Robinson, G. D., Kuhl, D. E., Schelbert, H. R.: Tc-99m dextran: a new blood-pool-labeling agent for radionuclide angiocardiography. J. Nucl. Med. 23, 348 (1982).10.1097/00003072-198109001-00003Search in Google Scholar PubMed

8. Bogdanov, A. A., Callahan, R. J., Wilkinson, R. A., Martin, C., Cameron, J. A., Fischman, A. J., Brady, T. J., Weissleder, R.: Synthetic copolymer kit for radionuclide blood-pool imaging. J. Nucl. Med. 35, 1880 (1994).Search in Google Scholar PubMed

9. Saatchi, K., Gelder, N., Gershkovich, P., Sivak, O., Wasan, K. M., Kainthan, R. K., Brooks, D. E., Häfeli, U. O.: Long-circulating non-toxic blood pool imaging agent based on hyperbranched polyglycerols. Int. J. Pharm. 422, 418 (2012).10.1016/j.ijpharm.2011.10.036Search in Google Scholar PubMed

10. Cross, S. J., Lee, H. S., Metcalfe, M. J., Norton, M. Y., Evans, N. T., Walton, S.: Assessment of left ventricular regional wall motion with blood pool tomography: comparison of 11CO PET with 99Tcm SPECT. Nucl. Med. Commun. 15, 283 (1994).10.1097/00006231-199404000-00160Search in Google Scholar PubMed

11. Mathias, C. J., Welch, M. J., Green, M. A., Diril, H., Meares, C. F., Gropler, R. J., Bergmann, S. R.: In vivo comparison of copper blood-pool agents: potential radiopharmaceuticals for use with copper-62. J. Nucl. Med. 32, 475 (1991).Search in Google Scholar PubMed

12. Basuli, F., Li, C., Xu, B., Williams, M., Wong, K., Coble, V. L., Vasalatiy, O., Seidel, J., Green, M. V., Griffiths, G. L., Choyke, P. L., Jagoda, E. M.: Synthesis of fluorine-18 radio-labeled serum albumins for PET blood pool imaging. Nucl. Med. Biol. 42, 219 (2015).10.1016/j.nucmedbio.2014.11.011Search in Google Scholar PubMed PubMed Central

13. Hoffend, J., Mier, W., Schuhmacher, J., Schmidt, K., Dimitrakopoulou-Strauss, A., Strauss, L. G., Eisenhut, M., Kinscherf, R., Haberkorn, U.: Gallium-68-DOTA-albumin as a PET blood-pool marker: experimental evaluation in vivo. Nucl. Med. Biol. 32, 287 (2005).10.1016/j.nucmedbio.2005.01.002Search in Google Scholar PubMed

14. Matsusaka, Y., Nakahara, T., Takahashi, K., Iwabuchi, Y., Nishime, C., Kajimura, M.: Jinzaki: M118F-FDG-labeled red blood cell PET for blood-pool imaging: preclinical evaluation in rats. EJNMMI Res. 7(1), 19 (2017).10.1186/s13550-017-0266-3Search in Google Scholar PubMed

15. Pirmettis, I., Arano, Y., Tsotakos, T., Okada, K., Yamaguchi, A., Uehara, T., Morais, M., Correia, J. D. G., Santos, I., Martins, M., Pereira, S., Triantis, C., Kyprianidou, P., Pelecanou, M., Papadopoulos, M.: New (99m)Tc(CO)(3) mannosylated dextran bearing S-derivatized cysteine chelator for sentinel lymph node detection. Mol. Pharm. 9, 1681 (2012).10.1021/mp300015sSearch in Google Scholar PubMed

16. Hoh, C. K., Wallace, A. M., Vera, D. R.: Preclinical studies of [99mTc]DTPA-mannosyl-dextran. Nucl. Med. Biol. 30, 457 (2003).10.1016/S0969-8051(03)00028-3Search in Google Scholar PubMed

17. Tsoukalas, C., Lazopoulos, A., Boschetti, F., Triantis, C., Bouziotis, P., Pelecanou, M., Papadopoulos, M., Pirmettis, I.: Labeling of a NOTA mannosylated dextran with 68Ga. Nucl. Med. Biol. 41, 801 (2014).10.1016/j.nucmedbio.2014.07.008Search in Google Scholar

18. Gholipour, N., Akhlaghi, M., Kheirabadi, A. M., Beiki, D., Geramifar, P., Yousefnia, H., Mazidi, M.: Chelator-free radiolabeling of dextran with 68Ga for PET studies. J. Radioanal. Nucl. Chem. 311(3), 1811 (2017).10.1007/s10967-016-5164-zSearch in Google Scholar

19. Pharmeuropa 30.4, Reference: PA/PH/Exp. 14/T (18) 13 ANP; GALLIUM (68Ga) CHLORIDE (ACCELERATOR-PRODUCED) SOLUTION FOR RADIOLABELLING (draft).Search in Google Scholar

20. Rösch, F.: Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 76, 24 (2013).10.1016/j.apradiso.2012.10.012Search in Google Scholar PubMed

21. Varshosaz, J.: Dextran conjugates in drug delivery. Expert Opin. Drug Deliv. 9, 509 (2012).10.1517/17425247.2012.673580Search in Google Scholar PubMed

22. Duarte, M. G., Geraldes, C. F. G. C., Peters, J. A., Gil, M. H.: Preparation of dextran-based macromolecular chelates for magnetic resonance angiography. In: Biorelated Polymers. Springer US, Boston, MA (2001).10.1007/978-1-4757-3374-7_19Search in Google Scholar

23. Du, J., Marquez, M., Hiltunen, J., Nilsson, S., Holmberg, A. R.: Radiolabeling of dextran with rhenium-188. Appl. Radiat. Isot. 53, 443 (2000).10.1016/S0969-8043(99)00283-3Search in Google Scholar PubMed

24. Haaksman, I. K., Besemer, A. C., Jetten, J. M., Timmermans, J. W., Slaghek, T. M.: The oxidation of the aldehyde groups in dialdehyde starch. Starch 58, 616 (2006).10.1002/star.200600546Search in Google Scholar

25. Heindel, N. D., Zhao, H., Leiby, J., VanDongen, J. M., Lacey, C. J., Lima, D. A., Shabsoug, B., Buzby, J. H.: Hydrazide pharmaceuticals as conjugates to polyaldehyde dextran: syntheses, characterization, and stability. Bioconjug. Chem. 1, 77 (1990).10.1021/bc00001a010Search in Google Scholar PubMed

26. Guo, M. Q., Hu, X., Wang, C., Ai, L.: Polysaccharides: structure and solubility. In: S. Xu (Ed.), Solubility of Polysaccharides (2017), InTech, Croatia, p. 7.10.5772/intechopen.71570Search in Google Scholar

27. Mirzaei, A., Jalilian, A. R., Shabani, G., Fakhari, A., Akhlaghi, M., Beiki, D.: Development of 68Ga ethyl cysteinate dimer for PET studies. J. Radioanal. Nucl. Chem. 307(1), 725 (2016).10.1007/s10967-015-4185-3Search in Google Scholar

28. Maia, J., Carvalho, R. A., Coelho, J. F. J., Simões, P. N., Gil, M. H.: Insight on the periodate oxidation of dextran and its structural vicissitudes. Polymer (Guildf). 52, 258 (2011).10.1016/j.polymer.2010.11.058Search in Google Scholar

29. Azzam, T., Raskin, A., Makovitzki, A., Brem, H., Vierling, P., Michal, L., Abraham, J.: Cationic polysaccharides for gene delivery. Macromolecules 35, 9947 (2002).10.1021/ma0209592Search in Google Scholar

30. Issa, M. G., Ferraz, H. G.: Intrinsic dissolution as a tool for evaluating drug solubility in accordance with the biopharmaceutics classification system. Dissolut. Technol. 18, 6 (2011).10.14227/DT180311P6Search in Google Scholar

31. Dhaneshwar, S., Kandpal, M., Gairola, N., Kadam, S., Kadam, S.: Dextran: a promising macromolecular drug carrier. Indian J. Pharm. Sci. 68, 705 (2006).10.4103/0250-474X.31000Search in Google Scholar

32. Sokolsky-Papkov, M., Domb, A. J., Golenser, J.: Impact of aldehyde content on amphotericin B-dextran imine conjugate toxicity. Biomacromolecules 7, 1529 (2006).10.1021/bm050747nSearch in Google Scholar PubMed

Received: 2018-03-21
Accepted: 2018-10-25
Published Online: 2019-02-28
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2959/html
Scroll to top button