Home Physical Sciences Quantification of trace level rare earth elements in Al matrices by ICP-MS
Article
Licensed
Unlicensed Requires Authentication

Quantification of trace level rare earth elements in Al matrices by ICP-MS

  • Brijlesh Kumar Nagar EMAIL logo , Sadhan Bijoy Deb EMAIL logo , Manoj Kumar Saxena and Bhupendra Singh Tomar
Published/Copyright: October 25, 2018

Abstract

A method has been developed for quantification of trace rare earth (Ce, Dy, Er, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb and Yb) impurities in alumina and aluminum by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation. The matrix separation was achieved by selective precipitation of trace elements. Due to its refractory nature a microwave digestion method was developed and optimized for the quantitative dissolution of Al2O3. The analytical methodology was validated by recovery studies with standard addition as well as with an independent γ-spectrometry technique using 152,154Eu tracers. The observed recovery in the synthetic samples was in the range of 93–100% with precision within 6.1–11.6 (%RSD), while the same in the case of radio tracer technique were found to be >98% and <2% (RSD), respectively. The method detection limit was found within 0.5–8.3 μg kg−1, respectively. The procedure is simple, organic waste free and suitable for routine analysis.

References

1. Fadhel, A. A. S., Ahmed, A. M., Nasr, H. A. Q.: Alumina ceramic for dental applications: a review article. Am. J. Mater. Res. 1(1), 26 (2014).Search in Google Scholar

2. Silva, M. V., Stainer, D., Al-Qureshi, H. A., Hotza, O. R. K. M. D.: Alumina-based ceramics for Armor application: mechanical characterization and ballistic testing. J. Ceram. 2014, 1 (2014).10.1155/2014/618154Search in Google Scholar

3. Liao, G., Keying, H., Liusheng, L., Jiang, M.: Study on application of alumina in high-purity and a lusite based refractory. J. Miner. Mater. Charact. Eng. 3(2), 81 (2004).10.4236/jmmce.2004.32009Search in Google Scholar

4. Davis, K.: Material review: alumina (Al2O3). School Dr. Stud.,Europen Union J. 2, 109 (2010).Search in Google Scholar

5. Buchmeiser, M. R.: New synthetic ways for the preparation of high-performance liquid chromatography supports. J. Chromatogr. A 918, 233 (2001).10.1016/S0021-9673(00)00129-1Search in Google Scholar PubMed

6. Furukawa, G. T., Douglas, T. B., McCoskey, R. E., Ginnings, D. C.: Thermal properties of alumina oxide from 0° to 1200°K. J. Res. Natl. Stand. 57(2), 67 (1956).10.6028/jres.057.008Search in Google Scholar

7. Geller, R. F., Yavorsky, P. J.: Melting point of alpha-alumina. J. Res. Natl. Stand. 34, 395 (1945).10.6028/jres.034.021Search in Google Scholar

8. Tangboriboon, N., Uttanawanit, N., Longtone, M., Wongpinthong, P., Sirivat, A., Kunanuruksapong, R.: Electrical and electrorheological properties of alumina/natural rubber (STR XL) composites. Materials 3, 656 (2010).10.3390/ma3010656Search in Google Scholar

9. Park, M. K., Kim, H. N., Baek, S. S., Kang, E. S., Baek, Y. K., Kim, D. K.: Dielectric properties of alumina ceramics in the microwave frequency at high temperature, Trans Tech Publications, Switezerland. Solid State Phenomena 124, 743 (2007).10.4028/www.scientific.net/SSP.124-126.743Search in Google Scholar

10. Kaczmar, J. W., Granat, K., Kurzawa, A., Grodzka, E.: Physical properties of copper based MMC strengthened with alumina. Arch. Foundry Eng. 14(2), 85 (2014).10.2478/afe-2014-0042Search in Google Scholar

11. Habasi, F.: A historical perspective: Bayer’s Process for alumina production. Bull. Hist. Chem. 17/18, 15 (1995).Search in Google Scholar

12. Olaremu, A. G.: Sequential leaching for the production of alumina from Nigerian clay. Int. J. Eng. Techn. Manage. Appl. Sci. 3(7), 103 (2015).Search in Google Scholar

13. Hosseini, S. A., Niaei, A., Salari, D.: Production of γ-Al2O3 from Kaolin. J. Phys. Chem. 1, 23 (2011).10.4236/ojpc.2011.12004Search in Google Scholar

14. Simon, N. J.: Cryogenic properties of inorganic insulation materials for ITER magnets. A Review: NISTIR 5030 December 1994.10.2172/761710Search in Google Scholar

15. Moreno, C., Sedano, L. A., McCarthy, K. J., Hodgson, E. R.: Hydrogenic species transport model for ceramic alumina used in ITER ICRH H&CD & diagnostics systems. Fusion Eng. Des. 82, 2647 (2007).10.1016/j.fusengdes.2007.05.028Search in Google Scholar

16. DOE-HDBK-1017/2-93. DOE Fundamentals Handbook. Material Science Volume 2 of 2. U.S. Department of Energy, Washington, D.C. (1993). Available at: https://www.standards.doe.gov/standards-documents/1000/1017-BHdbk-1993-V2.Search in Google Scholar

17. Piatti, G., Fiorini, P., Schiller, P.: High purity aluminium alloys for experimental fusion reactors. Nucl. Eng. Des. 1, 137 (1984).10.1016/0167-899X(84)90036-3Search in Google Scholar

18. Dietrich, G. A.: Aluminium alloy Selection and Application (1998), Published by The Aluminium Association, Inc., Washington. www.calm-aluminium.com.au/Documents/Aluminium-Alloys.pdf.Search in Google Scholar

19. Rambabu, P., Prasad, N. E., Kutumbarao, V. V., Wanhill, R. J. H.: Chapter 2: aluminium alloys for aerospace application. In: N. Eswara Prasad, R. J. H. Wanhill (Eds.), Aerospace Materials and Material Technologies, Indian Institute of Metals Series, 1, 29 (2017). DOI 10.1007/978-981-10-2134-3_2.10.1007/978-981-10-2134-3_2Search in Google Scholar

20. Gonzalez, M., Hodgson, E. R.: Radiation resistance bolometers with Al2O3 and AlN substrates, anodized aluminium support frames, and improved electrical contacts. Fusion Eng. Des. 84, 829 (2009).10.1016/j.fusengdes.2009.01.002Search in Google Scholar

21. IAEA-TECDOC-1637. Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water, International Atomic Energy Agency Vienna, (2009). http://www.iaea.org/books.Search in Google Scholar

22. Thummler, F., Lilienthal, H. E., Nazare, S.: UAl2-Al instead of UAl3-Al in fuel-element plates for advanced test reactors. Powder Metall. 12(23), 1 (1969).10.1179/pom.1969.12.23.001Search in Google Scholar

23. Hou, P. Y.: Impurity effect on alumina scale growth. J. Am. Ceram. Soc. 86(4), 660 (2003).10.1111/j.1151-2916.2003.tb03355.xSearch in Google Scholar

24. Higuchi, T., Shiiyama, K., Izumi, Y., Howlader, M. M. R., Kutsuwada, M., Kinoshita, C.: Effect of specimen thickness and impurity on conductivity of alumina under electron irradiation. J. Nucl. Mater. 307–311, 1250 (2002).10.1016/S0022-3115(02)00979-0Search in Google Scholar

25. Yoo, J. H., Nam, J. C., Baik, S.: Quantitative evaluation of glass-forming impurities in alumina: equivalent silica concentration (ESC). J. Am. Cerm. Soc. 82(8), 2233 (1999).10.1111/j.1151-2916.1999.tb02067.xSearch in Google Scholar

26. Corte, F. D., Simonits, A.: Ko-measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J. Radioanal. Nucl. Chem. 133, 43 (1989).10.1007/BF02039970Search in Google Scholar

27. Nagar, B. K., Saha, A., Deb, S. B., Saxena, M. K.: Quantification of trace and ultra trace elements in uranium-silicide (U3Si2) fuel employing inductively coupled plasma mass spectrometry. Atom. Spectrosc. 35(5), 187 (2014).10.46770/AS.2014.05.001Search in Google Scholar

28. American Society for Testing and Materials. Report: ASTM C753-04 (2009), Standard specification for nuclear grade sinterable uranium dioxide powder. https://cds.cern.ch/record/1482908?ln=en.Search in Google Scholar

29. Caicedo-Martinez, C. E., Koroleva, E. V., Tompson, G. E., Skeldon, P., Shimizu, K., Hoellrigl, G., Campbell, C., McAlpine, E.: Influence of impurities in aluminium on surface treatment. Corros. Sci. 44, 2611 (2002).10.1016/S0010-938X(02)00041-0Search in Google Scholar

30. Guitar, M. A., Ramos-Moore, E., Mucklich, F.: The influence of impurities on the formation of protective aluminium oxides on RuAl thin films. J. Alloys Compd. 594, 165 (2014).10.1016/j.jallcom.2014.01.137Search in Google Scholar

31. Ducere, J. M., Rouhani, M. D., Rossi, C., Esteve, A.: Role of impurities, defects and their complexes on the trapping of hydrogen in bulk aluminium and the Al(111) surface. Comput. Mater. Sci. 126, 272 (2017).10.1016/j.commatsci.2016.09.047Search in Google Scholar

32. Auchet, J., Terzieff, P.: The effect of Ti, V and Cr impurities on the transport properties of liquid aluminium. J. Alloys Compd. 261, 295 (1997).10.1016/S0925-8388(97)00207-7Search in Google Scholar

33. Kerness, N. D., Hossain, T. Z., Mc Guire, S. C.: Impurity study of alumina and aluminium nitride ceramics: microelectronics packaging applications. Appl. Radiat. Isot. 48(1), 5 (1997).10.1016/S0969-8043(96)00127-3Search in Google Scholar

34. Shinde, A. D., Acharya, R., Reddy, A. V. R.: Trace element determination in high-purity aluminium clad samples by ko-based internal monostandard instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 299, 1287 (2014).10.1007/s10967-013-2856-5Search in Google Scholar

35. Shibata, S., Tanaka, S., Suzuki, T., Umezawa, H., Lo, J. G., Yeh, S. J.: Determination of impurities in aluminium metals by proton activation. Int. J. Appl. Radiat. Isot. 30, 563 (1979).10.1016/0020-708X(79)90171-6Search in Google Scholar

36. de Mattos, J. C. P., Rodrigues, L. F., de Mores Flores, E. M., Krivan, V.: Determination of trace impurities in aluminium nitride by direct solid sampling graphite furnace atomic absorption spectrometry. Spectrochem. Acta B 66, 637 (2011).10.1016/j.sab.2011.07.002Search in Google Scholar

37. Hong-kun, L., Ming, L., Zhi-jiang, C., Run-hua, L.: Quantitative analysis of impurities in aluminium alloys by laser-induced breakdown spectroscopy without internal calibration. Trans. Nonferrous Met. Soc. China 18, 222 (2008).10.1016/S1003-6326(08)60040-0Search in Google Scholar

38. Yonga, C.: ICP-AES determination of 15 kind of impurity elements in the vanadium-aluminium alloy, International Conference on Advances in Engineering 2011. Procedia Eng. 24, 447 (2011).10.1016/j.proeng.2011.11.2674Search in Google Scholar

39. Lee, J., Kim, Y.: Chemical dissolution of iridium powder using alkali fusion followed by high-temprature leaching. Mater. Trans. 52(110), 2067 (2011).10.2320/matertrans.M2011202Search in Google Scholar

40. Frederico, G. P., Rainerio, E. J., Tatiana, D. S. P.: Sample preparation for determination of rare earth elements in geological samples by ICP-MS: a critical review. Anal. Lett. 45, 1537 (2012).10.1080/00032719.2012.677778Search in Google Scholar

41. Nagar, B. K., Saxena, M. K., Tomar, B. S.: Development of analytical method for quantification of trace metallic impurities in U-Mo alloy employing time-of-flight-based ICP-MS. Atom. Spectrosc. 38(5), 37 (2017).10.46770/AS.2017.05.001Search in Google Scholar

42. Gayer, K. H., Thompson, L. C., Zajicek, O. T.: The solubility of aluminium hydroxides in acidic and basic media at 25 °C. Can. J. Chem. 36, 1268 (1958).10.1139/v58-184Search in Google Scholar

43. Clifford, C. M., Frederic, V.: Solubility product relations in the rare earth hydrous hydroxide. Anal. Chim. Acta. 20, 415 (1959).10.1016/0003-2670(59)80090-8Search in Google Scholar

44. Freslon, N., Bayon, G., Birot, D., Bollinger, C., Barrat, J. A.: Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in sea water using Tm addition and Mg(OH)2 co-precipitation. Talanta 85(1), 582 (2011).10.1016/j.talanta.2011.04.023Search in Google Scholar PubMed

45. Lum, T. S., Leung, K. S. Y.: Strategies to overcome spectral interference in ICP-MS detection. J. Anal. Atom. Spectrom. 31, 1078 (2016).10.1039/C5JA00497GSearch in Google Scholar

46. Raut, N. M., Haung, L. S., Agrawal, S. K., Lin, K. C.: Mathematical correction for polyatomic isobaric spectral interferences in determination of lanthanides by inductively coupled plasma mass spectrometry. J. Chin. Chem. Soc. 52, 589 (2005).10.1002/jccs.200500087Search in Google Scholar

47. Belter, M., Sajnog, A., Barlkiewtcz, D.: Over a century of detection and quantification capabilities in analytical chemistry–historical overview and trends. Talanta 129, 606 (2014).10.1016/j.talanta.2014.05.018Search in Google Scholar PubMed

Received: 2018-07-02
Accepted: 2018-10-01
Published Online: 2018-10-25
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3019/html
Scroll to top button