Startseite Naturwissenschaften Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites

  • Feng Pan , Muhammad Khan ORCID logo EMAIL logo , Li Tiehu EMAIL logo , Elisha Javed , Amjad Hussain , Amir Zada EMAIL logo , Dang Alei und Zainul Wahab
Veröffentlicht/Copyright: 6. September 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nanodiamonds (NDs), the allotropic carbon nanomaterials with nanosize, durable inert core, adjustable surface morphology, high thermal constancy, and super mechanical performances, possess the characteristics of promising reinforcement materials for various technological applications. However, ND particles hold a vigorous propensity to aggregate in liquid media, obstructing their implementation in mechanical and thermal sciences. This aggregation is caused by high surface to volume ratio. By reducing the surface energy and lowering cluster formation, the mechanical and thermal properties of NDs can be polished. Herein, we report on the covalent functionalization of NDs with amine moiety through ball milling method. Their dispersion was checked in ethanol and polymethyl methacrylate (PMMA polymer) against nonfunctionalized NDs. The dispersive behavior showed that ball mill functionalized NDs produced preferably stable aqueous dispersions in ethanol media. Furthermore, 0.1, 0.2, and 0.4 wt% ND/PMMA composites were synthesized, and their mechanical and thermal behaviors were studied in terms of hardness, compression, Young`s modulus, flexural strength, tensile strength, and thermogravimetric analysis (TGA). Results revealed that the composites containing 0.2 wt% functionalized ND loaded with PMMA matrix showed outstanding mechanical and thermal performances indicating that 0.2 wt% is the optimum amount for achieving excellent outcomes.


Corresponding authors: Muhammad Khan and Li Tiehu, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072 Xian, P. R. China, E-mail: , ; and Amir Zada, Department of Chemistry, Abdul Wali Khan University Mardan, K.P.K 23200, Pakistan, E-mail: (A. Zada)

Award Identifier / Grant number: 2016JQ5108

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has received postdoctoral funding from the Shaanxi Province and Natural Science Foundation of China (grant no. 2020M673475). The authors also very grateful to the Higher Education Commission of Pakistan for SRGP funding under project no. 2562.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Khan, M., Tiehu, L., Khurram, A. A., Zhao, T. K., Xiong, C., Ali, Z., Abbas, T. A., Asmatullah, A. I., Lone, A. L., Iqbal, S., Khan, A. Active sites determination and de-aggregation of detonation nanodiamond particles. Chiang Mai J. Sci. 2017, 44, 1–14.Suche in Google Scholar

2. Raziq, F., Khan, K., Ali, S., Ali, S., Xu, H., Ali, I., Zada, A., Ismail, P. M., Ali, A., Khan, H., Wu, X., Kong, Q., Zahoor, M., Xiao, H., Zu, X., Li, S., Qiao, L. Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: synergistic electronic and chemical engineering. Chem. Eng. J. 2022, 446, 137161; https://doi.org/10.1016/j.cej.2022.137161.Suche in Google Scholar

3. Khan, M., Shahzad, N., Xiong, C., Zhao, T. K., Li, T., Siddique, F., Ali, N., Shahzad, M., Ullah, H., Rakha, S. A. Dispersion behavior and the influences of ball milling technique on functionalization of detonated nano-diamonds. Diam. Relat. Mater. 2016, 61, 32–40; https://doi.org/10.1016/j.diamond.2015.11.007.Suche in Google Scholar

4. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Synthesis and physiochemical performances of PVC-sodium polyacrylate and PVC-sodium polyacrylate-graphite composite polymer membrane. Z. Phys. Chem. 2021, 235, 1791–1810; https://doi.org/10.1515/zpch-2020-1763.Suche in Google Scholar

5. Marathe, D., Joshi, H., Kambli, P., Joshi, P. Study of effect of wood-flour content on mechanical, thermal, rheological properties and thermo formability of wood-polypropylene composites. J. Polym. Eng. 2022, 42, 1–8; https://doi.org/10.1515/polyeng-2021-0153.Suche in Google Scholar

6. Poyraz, B., Unal, H., Dayı, M. Mesopore silica effect on chemical, thermal and tribological properties of polyimide composites. J. Polym. Eng. 2022, 42, 18–26; https://doi.org/10.1515/polyeng-2021-0146.Suche in Google Scholar

7. Xiong, C., Li, T., Khan, M., Li, H., Zhao, T. A three-dimensional MnO2/graphene hybrid as a binder-free supercapacitor electrode. RSC Adv. 2015, 5, 85613–85619; https://doi.org/10.1039/c5ra14411f.Suche in Google Scholar

8. Xu, T., Xu, H., Zhong, Y., Zhang, L., Qian, D., Hu, Y., Zhu, Y., Mao, Z. Preparation and characteristics of sepiolite-waterborne polyurethane composites. J. Polym. Eng. 2022, 42, 66–74; https://doi.org/10.1515/polyeng-2021-0175.Suche in Google Scholar

9. Kalemtas, A., Kocer, H. B., Aydin, A., Terzioglu, P., Aydin, G. Mechanical and antibacterial properties of ZnO/chitosan bio-composite films. J. Polym. Eng. 2022, 42, 35–47; https://doi.org/10.1515/polyeng-2021-0143.Suche in Google Scholar

10. Zada, A., Khan, M., Hussain, Z., Shah, M. I. A., Ateeq, M., Ullah, M., Ali, N., Shaheen, S., Yasmeen, H., Shah, S. N. A., Dang, A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z. Phys. Chem. 2021, 236, 53–66; https://doi.org/10.1515/zpch-2020-1778.Suche in Google Scholar

11. Raziq, F., Aligayev, A., Shen, H., Ali, S., Shah, R., Ali, S., Bakhtiar, S. H., Ali, A., Zarshad, N., Zada, A., Xia, X., Zu, X., Khan, M., Wu, X., Kong, Q., Liu, C., Qiao, L. Exceptional photocatalytic activities of rGO modified (B, N) co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: a joint experimental and DFT study. Adv. Sci. 2022, 9, 2102530; https://doi.org/10.1002/advs.202102530.Suche in Google Scholar PubMed PubMed Central

12. Basiuk, V. A., Kakazey, M., Vlasova, M., Basiuk, E. V. Effect of structural defects on the strength of adsorption of La and Lu species on graphene. Diam. Relat. Mater. 2019, 100, 107597; https://doi.org/10.1016/j.diamond.2019.107597.Suche in Google Scholar

13. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Facile synthesis of MoS2/Cu as trifunctional catalyst for electrochemical overall water splitting and photocatalytic CO2 conversion. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Suche in Google Scholar

14. Taylor, A., Drahokoupil, J., Fekete, L., Klimsa, L., Kopecek, J., Purkrt, A., Remes, Z., Ctvrtlik, R., Tomastik, J., Frank, O., Janicek, P., Mistrik, J., Mortet, V. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 2016, 69, 13–18; https://doi.org/10.1016/j.diamond.2016.06.014.Suche in Google Scholar

15. Chuang, J., Chang, C., Chang, Y. J., Chou, P., Wen, Y., Liu, C., Chou, T., Chow, T. J. Synthesis of rod-shaped dipolar compounds for the study of long-range electronic interactions. J. Chin. Chem. Soc. 2021, 11, 2211–2223; https://doi.org/10.1002/jccs.202100205.Suche in Google Scholar

16. Welz, S., Gogotsi, Y., McNallan, M. J. Nucleation, growth, graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 2003, 93, 4207–4214; https://doi.org/10.1063/1.1558227.Suche in Google Scholar

17. Dang, A., Sun, Y., Fang, C., Li, T., Liu, X., Xia, Y., Ye, F., Zada, A., Khan, M. Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl. Surf. Sci. 2022, 58, 152432; https://doi.org/10.1016/j.apsusc.2022.152432.Suche in Google Scholar

18. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Fabrication of highly dispersed Pt NPs in nanoconfined spaces of as-made KIT-6 for nitrophenol and MB catalytic reduction in water. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Suche in Google Scholar

19. Zada, A., Ali, N., Ateeq, M., Flores, A. M. H., Hussain, Z., Shaheen, S., Ullah, M., Ali, S., Khan, I., Ali, W., Shah, M. I. A., Khan, W. Surface plasmon resonance excited electron induction greatly extends H2 evolution and pollutant degradation activity of g-C3N4 under visible light irradiation. J. Chin. Chem. Soc. 2020, 67, 983–989; https://doi.org/10.1002/jccs.201900398.Suche in Google Scholar

20. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Preparation of activated porous glass adsorbent through thermochemical reforming of ampoules and eggshells for remediation of direct blue dye pollution. Asia Pac. J. Chem. Eng. 2021, 16, e2610; https://doi.org/10.1002/apj.2610.Suche in Google Scholar

21. Yamada, H., Chayahara, A., Mokuno, Y. Method to increase the thickness and quality of diamond layers using plasma chemical vapor deposition under (H, C, N, O) system. Diam. Relat. Mater. 2020, 101, 107652; https://doi.org/10.1016/j.diamond.2019.107652.Suche in Google Scholar

22. Behler, K. D., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., Gogotsi, Y. Nanodiamond-polymer composite fibers and coatings. ACS Nano 2009, 3, 363–369; https://doi.org/10.1021/nn800445z.Suche in Google Scholar PubMed

23. Neitzel, I., Mochalin, V., Knoke, I., Palmese, G. R., Gogotsi, Y. Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 2011, 71, 710–716; https://doi.org/10.1016/j.compscitech.2011.01.016.Suche in Google Scholar

24. Khan, M., Khurram, A. A., Tiehu, L., Zhao, T. K., Ali, Z., Vivek, P. Synergistic effect of organic and inorganic nano fillers on the dielectric and mechanical properties of epoxy composites. J. Mater. Sci. Technol. 2018, 34, 2424–2430; https://doi.org/10.1016/j.jmst.2018.06.014.Suche in Google Scholar

25. Khan, M., Khurram, A. A., Tiehu, L., Zhao, T. K., Xiong, C., Ali, Z., Ali, N., Ullah, A. Reinforcement effect of acid modified nanodiamond in epoxy matrix for enhanced mechanical and electromagnetic properties. Diam. Relat. Mater. 2017, 78, 58–66; https://doi.org/10.1016/j.diamond.2017.08.001.Suche in Google Scholar

26. Liu, S., Zada, A., Yu, X., Liu, F., Jin, G. NiFe2O4/g-C3N4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. Chemosphere 2022, 135717; https://doi.org/10.1016/j.chemosphere.2022.135717.Suche in Google Scholar PubMed

27. Tiainen, T., Myllymaki, T. T. T., Hatanpaa, T., Tenhu, H., Hietala, S. Polyelectrolyte stabilized nanodiamond dispersions. Diam. Relat. Mater. 2019, 95, 185–194; https://doi.org/10.1016/j.diamond.2019.04.019.Suche in Google Scholar

28. Jiao, S., Li, T., Zhang, Y., Khan, M. A three-dimensional vertically aligned carbon nanotube/polyaniline composite as a supercapacitor electrode. RSC Adv. 2016, 6, 110592–110599; https://doi.org/10.1039/c6ra17674g.Suche in Google Scholar

29. Subhani, T., Latif, M., Ahmad, I., Rakha, S. A., Ali, N., Khurram, A. A. Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater. Des. 2015, 87, 436–444; https://doi.org/10.1016/j.matdes.2015.08.059.Suche in Google Scholar

30. Yang, Y., Dan, Y. Preparation of PMMA/SiO2 composite particles via emulsion polymerization. Colloid Polym. Sci. 2003, 281, 794–799; https://doi.org/10.1007/s00396-002-0845-2.Suche in Google Scholar

31. Cui, N., Zada, A., Song, J., Yang, Y., Liu, M., Wang, Y., Wu, Y., Qi, K., Selvaraj, R., Liu, S., Jin, G. Plasmon-induced ZnO-Ag/AgCl photocatalyst for degradation of tetracycline hydrochloride. Desalination Water Treat. 2022, 245, 247–254; https://doi.org/10.5004/dwt.2022.27976.Suche in Google Scholar

32. Shahzad, N., Chen, F., Khan, M. Photovoltaic characteristics of titania photoanodes modified with silver nanoparticles by pulsed laser deposition. Mater. Lett. 2016, 163, 266–226; https://doi.org/10.1016/j.matlet.2015.10.096.Suche in Google Scholar

33. Mochalin, V. N., Shenderova, O., Ho, D., Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23; https://doi.org/10.1038/nnano.2011.209.Suche in Google Scholar PubMed

34. Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., Khan, A. Enhanced photodegradation of methylene blue with alkaline and transition-metal ferrite nano photocatalysts under direct sun light irradiation. J. Chin. Chem. Soc. 2019, 66, 402–408; https://doi.org/10.1002/jccs.201800213.Suche in Google Scholar

35. Zhang, J., Su, D. S., Blume, R., Schlogl, R., Wang, R., Yang, X., Gajovic, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam free dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. 2010, 49, 8640–8644; https://doi.org/10.1002/anie.201002869.Suche in Google Scholar PubMed

36. Ali, Z., Tian, L., Khan, M., Zhao, P., Zhang, B., Ali, N., Zhang, Q. Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. J. Mol. Catal. B Enzym. 2016, 134, 129–135; https://doi.org/10.1016/j.molcatb.2016.10.011.Suche in Google Scholar

37. Livramento, V., Correia, J. B., Shohoji, N., Osawa, E. Nanodiamond as an effective reinforcing component for nano-copper. Diam. Relat. Mater. 2007, 16, 202–204; https://doi.org/10.1016/j.diamond.2006.05.008.Suche in Google Scholar

38. Khan, M., Hamid, A., Tiehu, L., Zada, A., Attique, F., Ahmad, N., Ullah, A., Hayat, A., Mahmood, I., Hussain, A., Khan, Y., Ahmad, I., Ali, A., Zhao, T. K. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diam. Relat. Mater. 2020, 107, 107897; https://doi.org/10.1016/j.diamond.2020.107897.Suche in Google Scholar

39. Xiong, C., Khan, M., Li, T., Zhao, T., Wang, J., Ji, X., Li, H., Liu, W., Shang, Y. Preparation of C/C-SiC composite by low temperature compression molding-liquid silicon infiltration and its application in automobile brake. Ceram. Int. 2016, 42, 1057–1062; https://doi.org/10.1016/j.ceramint.2015.09.030.Suche in Google Scholar

40. Tang, Q., Cao, L., Lang, X., Zong, Y., Zong, C. Enhancement of thermoelectric and mechanical properties of thermoplastic vulcanizates (TPVs) with hydroxylated graphene by dynamic vulcanization. J. Polym. Eng. 2022, 42, 48–56; https://doi.org/10.1515/polyeng-2021-0140.Suche in Google Scholar

41. Ali, Z., Li, T., Khan, M., Ali, N. Immobilization of lipase on iron oxide organic/inorganic hybrid particles, a review article. Int. J. Mater. Sci. 2018, 53, 106–117; https://doi.org/10.1515/rams-2018-0008.Suche in Google Scholar

42. Szczypta, A. F., Jantas, D., Ciepiela, F., Grzonka, J. Graphene oxide conductive polymer nanocomposite coatings obtained by the EPD method as substrates for neurite outgrowth. Diam. Relat. Mater. 2020, 102, 107663; https://doi.org/10.1016/j.diamond.2019.107663.Suche in Google Scholar

43. Zhang, S., Ji, G., Xia, T., Jia, J., Zhen, M., Li, Z., Hao, X. Effects of micro-carbon particles and nano-carbon dots induced structural and mechanical changes of C/C composites prepared by directional pulsed gas flow TG-CVI method. Diam. Relat. Mater. 2020, 105, 107759; https://doi.org/10.1016/j.diamond.2020.107759.Suche in Google Scholar

44. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. Visible light-excited surface plasmon resonance charge transfer significantly improves the photocatalytic activities of ZnO semiconductor for pollutants degradation. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/jccs.202000205.Suche in Google Scholar

45. Radouane, N., Depriester, M., Maaroufi, A., Singh, D. P., Ouaki, B., Duponchel, B., Elass, A., Tidahy, L., Sahraoui, A. H. Synthesis, mechanical, thermal, electrical characterization of graphite-epoxy composites. J. Chin. Chem. Soc. 2021, 68, 1456–1465; https://doi.org/10.1002/jccs.202000490.Suche in Google Scholar

46. Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982; https://doi.org/10.1103/physrev.56.978.Suche in Google Scholar

47. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int. J. Hydrogen Energy 2020, 45, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Suche in Google Scholar

48. Zhao, T. K., Jin, W., Wang, Y., Ji, X., Yan, H., Khan, M., Jiang, Y., Dang, A., Li, H., Li, T. Facile synthesis of graphene nanosheets via barium ferrite assisted intercalation and secondary expansion of graphite. Mater. Lett. 2018, 212, 1–3; https://doi.org/10.1016/j.matlet.2017.10.052.Suche in Google Scholar

49. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing SnO2 with g-C3N4. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Suche in Google Scholar PubMed PubMed Central

50. Zhao, Y., Zada, A., Yang, Y., Pan, J., Wang, Y., Yan, Z., Xu, Z., Qi, K. Photocatalytic removal of antibiotics on g-C3N4 using amorphous CuO as cocatalysts. Front. Chem. 2021, 9, 797738; https://doi.org/10.3389/fchem.2021.797738.Suche in Google Scholar PubMed PubMed Central

51. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Probing the physio-chemical appraisal of green synthesized PbO nanoparticles in PbO-PVC nanocomposite polymer membranes. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Suche in Google Scholar PubMed

52. Khan, M., Li, T., Zaidi, S. B. A., Javed, E., Hussain, A., Hayat, A., Zada, A., Alei, D., Ullah, A. Synergistic effect of nanodiamond and titanium oxide nanoparticles on the mechanical, thermal an electrical properties of pitch derived carbon foam composites. Polym. Int. 2021, 70, 1733–1740; https://doi.org/10.1002/pi.6274.Suche in Google Scholar

53. Zhang, T., Neumann, A., Lindlau, J., Wu, Y., Pramanik, G., Naydenov, B., Jelezko, F., Schuder, F., Huber, S., Huber, M., Stehr, F., Hogele, A., Weil, T., Liedl, T. DNA-based self-assembly of fluorescent nanodiamonds. J. Am. Chem. Soc. 2015, 137, 9776–9779; https://doi.org/10.1021/jacs.5b04857.Suche in Google Scholar PubMed

54. Zada, A., Khan, M., Khan, M. A., Khan, Q., Yangjeh, A. H., Dang, A., Maqbool, M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Suche in Google Scholar PubMed

55. Chang, I. P., Hwang, K. C., Ho, J. A., Lin, C., Hwu, R. J. R., Horng, J. Facile surface functionalization of nanodiamonds. Langmuir 2010, 26, 3685–3689; https://doi.org/10.1021/la903162v.Suche in Google Scholar PubMed

56. Chang, B., Lin, H., Su, L., Lin, W., Lin, R., Tzeng, Y., Lee, R. T., Lee, Y. C., Yu, A. L., Chang, H. Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv. Funct. Mater. 2013, 23, 5737–5745; https://doi.org/10.1002/adfm.201301075.Suche in Google Scholar

57. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Alei, D., Khan, A. R., Ali, R., Hussain, H., Hussain, J., Wahab, Z., Imran, M. Physiochemical evaluations, mechanical attenuations and thermal stability of graphene nanosheets and functionalized nanodiamonds loaded pitch derived carbon foam composites. Diam. Relat. Mater. 2022, 26, 109077; https://doi.org/10.1016/j.diamond.2022.109077.Suche in Google Scholar

58. Zhang, Z., Zada, A., Cui, N., Liu, N., Liu, M., Yang, Y., Jiang, D., Jiang, J., Liu, S. Synthesis of Ag loaded ZnO/BiOCl with high photocatalytic performance for the removal of antibiotic pollutants. Crystals 2021, 11, 981; https://doi.org/10.3390/cryst11080981.Suche in Google Scholar

59. Kaur, R., Chitanda, J. M., Michel, D., Maley, J., Borondics, F., Yang, P., Verrall, R. E., Badea, I. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, nucleic acid binding studies. Int. J. Nanomed. 2012, 7, 3851–3866.10.2147/IJN.S32877Suche in Google Scholar PubMed PubMed Central

60. Jabeen, S., Gul, S., Kausar, A., Muhammad, B., Farooq, M. An innovative approach to the synthesis of PMMA/PEG/nanobifiller filled nanocomposites with enhanced mechanical and thermal properties. Polym. Plast. Technol. Eng. 2019, 58, 427–442; https://doi.org/10.1080/03602559.2018.1471721.Suche in Google Scholar

61. Sundar, L. S., Singh, M. K., Sousa, A. C. M. Enhanced thermal properties of nanodiamond nanofluids. Chem. Phys. Lett. 2016, 644, 99–110; https://doi.org/10.1016/j.cplett.2015.11.028.Suche in Google Scholar

62. Kausar, A. Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: physical properties and thermo-responsive shape-memory behavior. Int. J. Polym. Anal. Char. 2016, 21, 348–358; https://doi.org/10.1080/1023666x.2016.1156911.Suche in Google Scholar

63. Saeed, K., Khan, I., Ahad, M., Shah, T., Sadiq, M., Zada, A., Zada, N. Preparation of ZnO/nylon 6/6 nanocomposites, their characterization and application in dye decolorization. Appl. Water Sci. 2021, 11, 105; https://doi.org/10.1007/s13201-021-01442-0.Suche in Google Scholar

Received: 2022-01-28
Accepted: 2022-04-17
Published Online: 2022-09-06
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0012/html
Button zum nach oben scrollen