Home Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
Article
Licensed
Unlicensed Requires Authentication

Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)

  • Hao Zheng , Lin Li , Sunsen Jin , Ping Fan EMAIL logo and Mingqiang Zhong
Published/Copyright: July 11, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, tiny amount of methacryloxyethyl trimethylammonium chloride (DMC) was added in poly(vinyl alcohol) (PVA) in order to widen its thermoplastic processing window. The effects of DMC content on thermal, mechanical, optical, and water resistance were investigated. The results showed that the thermal stability of PVA/DMC was improved obviously. Compared with pure PVA, with tiny amount (∼0.6 wt%) of DMC, the initial decomposition temperature and the fastest decomposition temperature of DMC/PVA increased from 246 °C and 287.6 °C–320.8 °C and 364.8 °C respectively. Moreover, this tiny amount of DMC did not affect the crystallization performance of PVA. PVA/DMC (0.6 wt%) blend have similar mechanical, optical properties and low temperature water resistance as those pure PVA have. The melting temperature of the PVA/DMC remained at 221 °C as that of pure PVA. This work might provide a new method for widening the thermoplastic processing window of PVA without sacrificing its other inherent properties. The reasons why DMC could improve the thermal stability for PVA was explored as well.


Corresponding author: Ping Fan, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yan, R. X. Water-Soluble Polymers; Chemical Industry Press: Beijing, 1998.Search in Google Scholar

2. Bolto, B., Tran, T., Hoang, M., Xie, Z. L. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 2009, 34, 969–981; https://doi.org/10.1016/j.progpolymsci.2009.05.003.Search in Google Scholar

3. Dorigato, A., Pegoretti, A. Biodegradable single-polymer composites from polyvinyl alcohol. Colloid Polym. Sci. 2012, 290, 359–370; https://doi.org/10.1007/s00396-011-2556-z.Search in Google Scholar

4. Finch, C. A. Polyvinyl Alcohol: Developments; John Wiley & Sons: New York, 1992.Search in Google Scholar

5. Costa-Júnior, E. S., Barbosa-Stancioli, E. F., Mansur, A. A. P., Vasconcelos, W. L., Mansur, H. S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr. Polym. 2009, 76, 472–481; https://doi.org/10.1016/j.carbpol.2008.11.015.Search in Google Scholar

6. Pereira, V. A., Arruda, I. N. Q. D., Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids 2015, 43, 180–188; https://doi.org/10.1016/j.foodhyd.2014.05.014.Search in Google Scholar

7. Lai, C. L., Chen, J. T., Fu, Y. J., Liu, W. R., Zhong, Y. R., Huang, S. H. Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films. Carbon 2015, 82, 513–522; https://doi.org/10.1016/j.carbon.2014.11.003.Search in Google Scholar

8. Liu, P., Chen, W., Yuan, L., Bai, S., Qi, W. Thermal melt processing to prepare halogen-free flame retardant poly(vinyl alcohol). Polym. Degrad. Stabil. 2014, 109, 261–269; https://doi.org/10.1016/j.polymdegradstab.2014.07.021.Search in Google Scholar

9. Nishino, T., Kani, S. C., Gotoh, K., Nakamae, K. Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer. Polymer 2002, 43, 2869–2873; https://doi.org/10.1016/s0032-3861(02)00059-9.Search in Google Scholar

10. Ku, T. H., Lin, C. A. Shear flow properties and melt spinning of thermoplastic polyvinyl alcohol melts. Textil. Res. J. 2005, 75, 681–688; https://doi.org/10.1177/0040517505059207.Search in Google Scholar

11. Jang, J., Lee, D. K. Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer 2003, 44, 8139–8146; https://doi.org/10.1016/j.polymer.2003.10.015.Search in Google Scholar

12. Jiang, X., Tan, B., Zhang, X., Ye, D., Dai, H., Zhang, X. Studies on the properties of poly (vinyl alcohol) film plasticized by urea/ethanolamine mixture. J. Appl. Polym. Sci. 2012, 125, 697–703; https://doi.org/10.1002/app.34957.Search in Google Scholar

13. Xiang, A., Wang, H. L., Liu, D., Ma, S. B., Zhang, X., Tian, H. F. Melt processing of high alcoholysis poly(vinyl alcohol) with different polyol plasticizers. J. Polym. Eng. 2018, 38, 659–665; https://doi.org/10.1515/polyeng-2017-0304.Search in Google Scholar

14. Tian, H. F., Liu, D., Yao, Y. Y., Ma, S. B., Zhang, X., Xiang, A. Effect of sorbitol plasticizer on the structure and properties of melt processed polyvinyl alcohol films. J. Food Sci. 2017, 82, 2926–2932; https://doi.org/10.1111/1750-3841.13950.Search in Google Scholar

15. Kučerík, J., Bakajová, B., Pekař, M. Antioxidant effect of lignite humic acids and its salts on the thermo-oxidative stability/degradation of polyvinyl alcohol blends. Environ. Chem. Lett. 2008, 6, 241–245; https://doi.org/10.1007/s10311-007-0129-7.Search in Google Scholar

16. Dong, W., Wang, Y., Huang, C., Xiang, S., Ma, P., Ni, Z. Enhanced thermal stability of poly (vinyl alcohol) in presence of melanin. J. Therm. Anal. Calorim. 2014, 115, 1661–1668; https://doi.org/10.1007/s10973-013-3419-2.Search in Google Scholar

17. Peng, Z., Kong, L. X. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stabil. 2007, 92, 1061–1071; https://doi.org/10.1016/j.polymdegradstab.2007.02.012.Search in Google Scholar

18. Dey, K. K., Kumar, P., Yadav, R. R., Dhar, A., Srivastava, A. K. CuO nanoellipsoids for superior physicochemical response of biodegradable PVA. RSC Adv. 2014, 4, 10123–10132; https://doi.org/10.1039/c3ra46898d.Search in Google Scholar

19. Wang, B., Wang, Q., Li, L. Morphology and properties of poly (vinyl alcohol)/MMT nanocomposite prepared by solid-state shear milling (S3M). J. Macromol. Sci., Part B 2014, 53, 78–92; https://doi.org/10.1080/00222348.2013.789312.Search in Google Scholar

20. Jiang, X., Zhang, X., Ye, D., Zhang, X., Dai, H. Modification of poly (vinyl alcohol) films by the addition of magnesium chloride hexahydrate. Polym. Eng. Sci. 2012, 52, 1565–1570; https://doi.org/10.1002/pen.23073.Search in Google Scholar

21. Nishino, T., Kani, Sc., Gotoh, K., Nakamae, K. Melt processing of poly (vinyl alcohol) through blending with sugar pendant polymer. Polymer 2002, 43, 2869–2873; https://doi.org/10.1016/s0032-3861(02)00059-9.Search in Google Scholar

22. Nishimura, H., Donkai, N., Miyamoto, T. Preparation and thermal properties of thermoplastic poly (vinyl alcohol) complexes with boronic acids. J. Polym. Sci. Polym. Chem. 1998, 36, 3045–3050; https://doi.org/10.1002/(sici)1099-0518(199812)36:17<3045::aid-pola5>3.0.co;2-c.10.1002/(SICI)1099-0518(199812)36:17<3045::AID-POLA5>3.0.CO;2-CSearch in Google Scholar

23. Peng, Z., Kong, L. X. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stabil. 2007, 92, 1061–1071; https://doi.org/10.1016/j.polymdegradstab.2007.02.012.Search in Google Scholar

24. Alexy, P., Bakoš, D., Crkoňová, G., Kolomaznik, K., Kršiak, M. Blends of polyvinylalcohol with collagen hydrolysate: thermal degradation and processing properties. Macromol. Symp. 2001, 170, 41–50; https://doi.org/10.1002/1521-3900(200106)170:1<41::aid-masy41>3.0.co;2-b.10.1002/1521-3900(200106)170:1<41::AID-MASY41>3.0.CO;2-BSearch in Google Scholar

25. Peng, Z., Li, S. D., Huang, M. F., Xu, K., Wang, C., Li, P. W. Thermogravimetric analysis of methyl methacrylate‐graft‐natural rubber. J. Appl. Polym. Sci. 2002, 85, 10937; https://doi.org/10.1002/app.10937.Search in Google Scholar

26. Dong, S. S., Wu, F., Chen, L., Wang, Y. Z., Chen, S. C. Preparation and characterization of Poly (vinyl alcohol)/graphene nanocomposite with enhanced thermal stability using PEtVIm-Br as stabilizer and compatibilizer. Polym. Degrad. Stabil. 2016, 131, 42–52; https://doi.org/10.1016/j.polymdegradstab.2016.07.001.Search in Google Scholar

27. Song, P., Xu, Z., Lu, Y., Guo, Q. Bioinspired strategy for tuning thermal stability of PVA via hydrogen-bond crosslink. Compos. Sci. Technol. 2015, 118, 16–22; https://doi.org/10.1016/j.compscitech.2015.08.006.Search in Google Scholar

28. Mukherjee, G. Modification of poly (vinyl alcohol) for improvement of mechanical strength and moisture resistance. J. Mater. Sci. 2005, 40, 3017–3019; https://doi.org/10.1007/s10853-005-2389-6.Search in Google Scholar

29. Gaikwad, P., Sharma, S., Sudarshan, K., Kumar, V., Kshirsagar, A., Pujari, P. Molecular packing of polyvinyl alcohol in PVA‐gold nanoparticles composites and its role on thermo‐mechanical properties. Polym. Compos. 2018, 39, 1137–1143; https://doi.org/10.1002/pc.24042.Search in Google Scholar

30. Liu, D. G., Sun, X., Tian, H. F., Sonakshi, M., Ma, Z. S. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 2013, 20, 2981–2989; https://doi.org/10.1007/s10570-013-0073-6.Search in Google Scholar

31. Hu, P., Jia, M., Zou, Y., He, L. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv. 2017, 7, 2450–2459; https://doi.org/10.1039/c6ra25579e.Search in Google Scholar

32. Wang, Y., Xiang, C. N., Li, T., Ma, P. M., Bai, H. Y., Xie, Y., Chen, M. Q., Dong, W. F. Enhanced thermal stability and UV-shielding properties of poly(vinyl alcohol) based on Esculetin. J. Phys. Chem. B 2017, 121, 1148–1157; https://doi.org/10.1021/acs.jpcb.6b11453.Search in Google Scholar

33. Ching, Y. C., Rahman, A., Ching, K. Y., Sukiman, N. L., Chuah, C. H. Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica. Biorescoures 2015, 10, 3364–3377; https://doi.org/10.15376/biores.10.2.3364-3377.Search in Google Scholar

34. Selvi, J., Mahalakshmi, S., Parthasarathy, V. Synthesis, structural, optical, electrical and thermal studies of poly(vinyl alcohol)/CdO nanocomposite films. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1918–1926; https://doi.org/10.1007/s10904-017-0662-1.Search in Google Scholar

35. Cai, Y. H., Zhao, M. M., Wang, H. T., Li, Y. J., Zhao, Z. G. Synthesis and properties of flame-retardant poly(vinyl alcohol)/pseudo-boehmite nanocomposites with high transparency and enhanced refractive index. Polym. Degrad. Stabil. 2014, 99, 53–60; https://doi.org/10.1016/j.polymdegradstab.2013.12.012.Search in Google Scholar

36. Yang, W., Owczarek, J. S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G. M., Kenny, J. M., Torre, L., Puglia, D. Antioxidant and antibacterial lignin nanoparticles in polyvinylalcohol/chitosan films for active packaging. Ind. Crop. Prod. 2016, 94, 800–811; https://doi.org/10.1016/j.indcrop.2016.09.061.Search in Google Scholar

Received: 2022-03-16
Accepted: 2022-05-18
Published Online: 2022-07-11
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0050/html
Scroll to top button