Home Solid-state extrusion of polymers using simple shear deformation
Article
Licensed
Unlicensed Requires Authentication

Solid-state extrusion of polymers using simple shear deformation

  • Andrei Voznyak EMAIL logo , Andrei Pogrebnyak , Oleh Tsys and Vlada Torina
Published/Copyright: July 11, 2022
Become an author with De Gruyter Brill

Abstract

The review considers the possibilities of new methods of solid-state extrusion of polymers based on the use of deformation schemes that include simple shear - equal-channel angular extrusion, equal-channel multi-angle extrusion and combined extrusion. Information on the evolution of the physico-mechanical properties of glassy, semi-crystalline polymers, polymer blends and composites is given.


Corresponding author: Andrei Voznyak, Kryvyi Rih State Pedagogical University, Gagarin av. 54, 50086 Kryvyi Rih, Ukraine, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Porter, R. S., Wang, L.-H. Uniaxial extrusion and order development in flexible chain polymers. J.M.S.-Rev. Macromol. Chem. Phys. 1995, 35C, 63–115; https://doi.org/10.1080/15321799508014590.Search in Google Scholar

2. Beygelzimer, Y. E., Beloshenko, V. A. Solid state extrusion. In Encyclopedia of Polymer Science and Technology; Kroschwitz, J. I., Ed. Wiley: Hoboken, Vol. 11, 2004; pp. 850–866.10.1002/0471440264.pst343Search in Google Scholar

3. Beloshenko, V., Vozniak, I., Beygelzimer, Y., Estrin, Y., Kulagin, R. Severe plastic deformation of polymers. Mater. Trans. 2019, 60, 1192–1202.10.2320/matertrans.MF201912Search in Google Scholar

4. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Y. V. Solid-phase extrusion of polyamide-6 by using combined deformation schemes. Polym. Eng. Sci. 2011, 51, 1092–1098; https://doi.org/10.1002/pen.21835.Search in Google Scholar

5. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Yu.V. Equal-channel multiangular extrusion of semicrystalline polymers. Polym. Eng. Sci. 2010, 50, 1000–1006; https://doi.org/10.1002/pen.21613.Search in Google Scholar

6. Xia, Z., Hartwig, T., Sue, H.-J. Mechanical behavior of bulk poly(ethylene terephthalate) subjected to simple shear. J. Macromol. Sci. 2004, 43B, 385–403; https://doi.org/10.1081/mb-120029776.Search in Google Scholar

7. Aour, B., Zairi, F., Nait-Abdelaziz, M., Gloagnen, J. M., Lefebvre, J. M. Analysis of polypropylene deformation in a 135° equal channel angular extrusion die: experiments and three-dimensional finite element simulation. Key Eng. Mater. 2010, 424, 71–78.10.4028/www.scientific.net/KEM.424.71Search in Google Scholar

8. Sue, H.-J., Dilan, H., Li, C. K.-Y. Simple shear plastic deformation behavior of polycarbonate plate due to the equal channel angular extrusion process. I: finite element methods modeling. Polym. Eng. Sci. 1999, 39, 2505–2515; https://doi.org/10.1002/pen.11638.Search in Google Scholar

9. Li, C. K.-Y., Xia, Z.-Y., Sue, H.-J. Simple shear plastic deformation behavior of polycarbonate plate II. Mechanical property characterization. Polymer 2000, 41, 6285–6293; https://doi.org/10.1016/s0032-3861(99)00837-x.Search in Google Scholar

10. Xia, Z., Sue, H.-J., Hsieh, A. J. Impact fracture behavior of molecularly orientated polycarbonate sheets. J. Appl. Polym. Sci. 2001, 9, 2060–2066; https://doi.org/10.1002/1097-4628(20010314)79:11<2060::aid-app1015>3.0.co;2-e.10.1002/1097-4628(20010314)79:11<2060::AID-APP1015>3.0.CO;2-ESearch in Google Scholar

11. Weon, J. I., Creasy, T. S., Sue, H.-J., Hsieh, A. J. Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym. Eng. Sci. 2005, 45, 314–324; https://doi.org/10.1002/pen.20269.Search in Google Scholar

12. Yoshioka, S., Tsukamoto, K. Effect of ECAE on plastic deformation behavior of glassy polymers. Jpn. Soc. Mater. Sci. 2009, 58, 29–34; https://doi.org/10.2472/jsms.58.29.Search in Google Scholar

13. Bouaksa, F., Ovalle, R. C. M., Zaïri, F. G., Stoclet, G., Naït-Abdelaziz, M., Gloaguen, J. M., Tamine, T., Lefebvre, J. M. Molecular chain orientation in polycarbonate during equal channel angular extrusion: experiments and simulations. Comput. Mater. Sci. 2014, 85, 244–252; https://doi.org/10.1016/j.commatsci.2013.12.028.Search in Google Scholar

14. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V. Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers. J. Appl. Polym. Sci. 2015, 132, 42180; https://doi.org/10.1002/app.42180.Search in Google Scholar

15. Sue, H.-J., Li, C. K.-Y. Control of orientation of lamellar structure in linear low density polyethylene via a novel equal channel angular extrusion process. J. Mater. Sci. Lett. 1998, 17, 853–856.10.1023/A:1006659127256Search in Google Scholar

16. Campbell, B., Edward, G. Equal channel angular extrusion of polyalkenes. Plast Rubb. Comp. 1999, 28, 467–475; https://doi.org/10.1179/146580199101540033.Search in Google Scholar

17. Xia, Z.-Y., Sue, H.-J., Rieker, T. P. Morphological evolution of poly(ethylene terephthalate) during equal channel angular extrusion process. Macromolecules 2000, 33, 8746–8755; https://doi.org/10.1021/ma001140w.Search in Google Scholar

18. Xia, Z., Sue, H.-J., Hsieh, A. J., Huang, J. W.-L. Dynamic mechanical behavior of oriented semicrystalline polyethylene terephthalate. J. Polym. Sci. 2001, 39B, 1394–1403; https://doi.org/10.1002/polb.1111.Search in Google Scholar

19. Phillips, A., Zhu, P., Edward, G. Simple shear deformation of polypropylene via the equal channel angular extrusion process. Macromolecules 2006, 39, 5796–5803; https://doi.org/10.1021/ma0607618.Search in Google Scholar

20. Wang, Z.-G., Xia, Z.-Y., Yu, Z.-Q., Chen, E.-Q., Sue, H.-J., Han, C. C., Hsiao, B. S. Lamellar formation and relaxation in simple sheared poly(ethylene terephthalate) by small-angle X-ray scattering. Macromolecules 2006, 39, 2930–2939; https://doi.org/10.1021/ma051928k.Search in Google Scholar

21. Boulahia, R., Gloaguen, J. M., Zaïri, F., Naït-Abdelaziz, M., Seguela, R., Boukharouba, T., Lefebvre, J. M. Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: effects of back-pressure and extrusion velocity. Polymer 2009, 50, 5508–5517; https://doi.org/10.1016/j.polymer.2009.09.050.Search in Google Scholar

22. Wang, T., Tang, S., Chen, J. Effect of processing route on morphology and mechanical behavior of polypropylene in equal- channel angular extrusion. J. Appl. Polym. Sci. 2011, 122, 2146–2158; https://doi.org/10.1002/app.34335.Search in Google Scholar

23. Qiu, J., Murata, T., Wu, X., Kitagawa, M., Kudo, M. Plastic deformation mechanism of crystalline polymer materials in the equal-channel angular extrusion process. J. Mater. Process. Technol. 2012, 212, 1528–1536; https://doi.org/10.1016/j.jmatprotec.2012.02.015.Search in Google Scholar

24. Beloshenko, V. A., Varyukhin, V. N., Voznyak, A. V., Voznyak, Y. V. Polyoxymethylene orientation by equal-channel multiple angular extrusion. J. Appl. Polym. Sci. 2012, 126, 837–844; https://doi.org/10.1002/app.36971.Search in Google Scholar

25. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V., Dudarenko, G. V. Equal-channel multiple angular extrusion of polyethylene. J. Appl. Polym. Sci. 2013, 127, 1377–1386; https://doi.org/10.1002/app.37993.Search in Google Scholar

26. Beloshenko, V. A., Voznyak, A. V., Voznyak, Yu.V. Control of the mechanical and thermal properties of semicrystalline polymers via a new processing route of the equal channel multiple angular extrusion. Polym. Eng. Sci. 2014, 54, 531–539; https://doi.org/10.1002/pen.23583.Search in Google Scholar

27. Beloshenko, V., Beygelzimer, Y., Voznyak, Y., Savchenko, B., Dmitrenko, V. Reinforcing effect caused by equal channel multiple angular extrusion of polymers manufactured by the FDM process: experimental investigation and mathematical modelling. J. Appl. Polym. Sci. 2018, 135, 45727; https://doi.org/10.1002/app.45727.Search in Google Scholar

28. Vozniak, I., Beloshenko, V., Savchenko, B., Voznyak, A. Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion. J. Appl. Polym. Sci. 2021, 138, 49720; https://doi.org/10.1002/app.49720.Search in Google Scholar

29. Boulahia, R., Zaïri, F., Vozniak, I., Gloaguen, J. M. Repeated equal-channel angular extrusion of polypropylene: processing routes and back-pressure influence. Mater. Today Commun. 2021, 26, 101754; https://doi.org/10.1016/j.mtcomm.2020.101754.Search in Google Scholar

30. Bartczak, Z., Argon, A. S., Cohen, R. E. Texture evolution in large strain simple shear deformation of high density polyethylene. Polymer 1994, 35, 3427–3441; https://doi.org/10.1016/0032-3861(94)90905-9.Search in Google Scholar

31. Li, H., Huang, C., Huang, X. Structure and properties of polypropylene/high-density polyethylene blends by solid equal-channel angular extrusion. Appl. Polym. Sci. 2014, 131, 39759; https://doi.org/10.1002/app.39759.Search in Google Scholar

32. Creasy, T. S., Kang, Y. S. Fiber orientation during equal channel angular extrusion of short fiber reinforced thermoplastics. J. Thermoplast. Compos. Mater. 2004, 17, 205–227; https://doi.org/10.1177/0892705704035403.Search in Google Scholar

33. Weon, J. I., Sue, H.-J. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 2005, 46, 6325–6334; https://doi.org/10.1016/j.polymer.2005.05.094.Search in Google Scholar

34. Weon, J. I., Xia, Z.-Y., Sue, H.-J. Morphological characterization of nylon-6 nanocomposite following a large-scale shear process. J. Polym. Sci. 2005, 43B, 3555–3566; https://doi.org/10.1002/polb.20649.Search in Google Scholar

35. Creasy, T. S., Kang, Y. S. Fiber fracture during equal-channel angular extrusion of short fiber-reinforced thermoplastics. J. Mater. Process. Technol. 2005, 160, 90–98; https://doi.org/10.1016/j.jmatprotec.2004.04.369.Search in Google Scholar

36. Ma, J., Simon, G. P., Edward, G. H. The effect of shear deformation on nylon-6 and two types of nylon-6/clay nanocomposite. Macromolecules 2008, 41, 409–420; https://doi.org/10.1021/ma071580o.Search in Google Scholar

37. Seo, Y. R., Weon, J. Manipulation of nanofiller and polymer structures by using equal channel angular extrusion. J. Kor. Phys. Soc. 2013, 63, 114–119; https://doi.org/10.3938/jkps.63.114.Search in Google Scholar

38. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y.V., Novokshonova, L. A., Grinyov, V. G. Effect of simple shear induced orientation process on the morphology and properties of polyolefin/graphite nanoplates composites. Compos. Sci. Technol. 2017, 139, 47–56; https://doi.org/10.1016/j.compscitech.2016.12.009.Search in Google Scholar

39. Beloshenko, V. A., Voznyak, A. V., Voznyak, Yu.V., Savchenko, B. New approach to production of fiber reinforced polymer hybrid composites. Compos. Part B. 2017, 112, 22–30; https://doi.org/10.1016/j.compositesb.2016.12.030.Search in Google Scholar

40. Beloshenko, V. A., Voznyak, A. V., Vozniak, I., Savchenko, B. Effects of orientation ordering of low-density polyethylene—multi-walled carbon nanotubes composites determined by severe plastic deformation. Polym. Eng. Sci. 2019, 59, 714–723; https://doi.org/10.1002/pen.24987.Search in Google Scholar

41. Al-Goussous, S., Wu, X., Yuan, Q., Xia, K. Back pressure equal channel angular consolidation of nylon 12. Mater. Forum 2007, 31, 36–38.Search in Google Scholar

42. Pawlak, A., Vozniak, I., Krajenta, J., Beloshenko, V., Galeski, A. Strain-induced consolidation of partially disentangled polypropylene. Express Polym. Lett. 2021, 15, 940–956; https://doi.org/10.3144/expresspolymlett.2021.76.Search in Google Scholar

43. Zhang, X., Gao, D., Wu, X., Xia, K. Bulk plastic materials obtained from processing raw powder of renewable natural polymers via back pressure equal-channel angular consolidation (BP-ECAC). Eur. Polym. J. 2008, 44, 780–792; https://doi.org/10.1016/j.eurpolymj.2007.12.011.Search in Google Scholar

44. Zhang, X., Wu, X., Gao, D., Xia, K. Bulk cellulose plastic materials from processing cellulose powder using back pressure-equal channel angular pressing. Carbohydr. Polym. 2012, 87, 2470–2476; https://doi.org/10.1016/j.carbpol.2011.11.019.Search in Google Scholar

45. Bai, Yu., Zhang, X., Xia, K. High strength biocomposites consolidated from hardwood particles by severe plastic deformation. Cellulose 2019, 26, 1067–1084; https://doi.org/10.1007/s10570-018-2125-4.Search in Google Scholar

46. Bai, Yu., Zhang, X., Xia, K. Biocomposites produced from hardwood particles by equal channel angular pressing without additives. J. Compos. Sci. 2019, 3, 36; https://doi.org/10.3390/jcs3020036.Search in Google Scholar

47. Bai, Yu., Zhang, X., Xia, K. Biocomposites produced from hardwood particles by equal channel angular pressing: effects of pre-treatment. J. Compos. Sci. 2020, 4, 181; https://doi.org/10.3390/jcs4040181.Search in Google Scholar

48. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V. Modification of polyamide-6 structure by combined methods of solid-phase extrusion. High Pres. Res. 2011, 31, 153–157; https://doi.org/10.1080/08957959.2010.534989.Search in Google Scholar

49. Beloshenko, V. A., Voznyak, A. V., Voznyak, Y. V., Glasunova, V. A., Konstantinova, T. E. Polyamide-6 structure modification by combined solid-phase extrusion. Polym. Eng. Sci. 2012, 52, 1815–1820; https://doi.org/10.1002/pen.23123.Search in Google Scholar

Received: 2022-05-12
Accepted: 2022-05-15
Published Online: 2022-07-11
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0108/html
Scroll to top button