Abstract
A new reactive flame retardant (DTA), containing phosphaphenanthrene and triazine-trione groups was synthesized and applied to improve the flame retardancy of unsaturated polyester resin. The thermal stability, flame retardancy and combustion behaviors of UP/DTA thermosets were detected by thermogravimeric analysis (TG), limited oxygen index (LOI), vertical burning (UL94) test and cone calorimeter test. According to the research results, the addition of DTA contributed to improving the flame retardancy of UP. After adding 20 wt% DTA, the LOI of UP composite increased from 19.0% of the neat UP to 26.6%, and UL94 rating reached V-0. In addition, compared with pure UP, the peak heat release rate (pk-HRR), average heat release rate (av-HRR) and total heat release rate (THR) of UP/DTA-20 thermosetting material decreased by 44.0, 26.2 and 29.5%, respectively. In the gaseous phase, DTA decomposed to generate nitrogen-containing fragments with diluting effect and phosphorus-containing free radicals with quenching effect to inhibit the combustion. In the condensed phase, phosphaphenanthrene group of DTA decomposed to generate phosphorus-based compounds, which promoted the carbonization of the UP matrix and cooperated with triazine-trione group to increase the char yield. Therefore, DTA plays an important role in flame retardancy in the gas and condensed phases.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Huo, S., Wang, J., Yang, S., Cai, H., Zhang, B., Chen, X., Wu, Q., Yang, L. Mater. Res. Express 2018, 5, 025304. https://doi.org/10.1088/2053-1591/aab2da.Search in Google Scholar
2. Hai, Y., Jiang, S., Zhou, C., Sun, P., Huang, Y., Niu, S. Dalton Trans. 2020, 49, 5803–5814. https://doi.org/10.1039/d0dt00686f.Search in Google Scholar PubMed
3. Chu, F., Xu, Z., Zhou, Y., Zhang, S., Mu, X., Wang, J., Hu, W., Song, L. Chem. Eng. J. 2020, 405, 126650.10.1016/j.cej.2020.126650Search in Google Scholar
4. Zhang, G., Yu, Y., Zhang, Y., Chen, Z., Chen, T., Jiang, J. Polym. Bull. 2021, 78, 5337–5354.10.1007/s00289-020-03377-zSearch in Google Scholar
5. Huo, S., Song, P., Yu, B., Ran, S., Venkata, S., Liu, L., Fang, Z., Wang, H. Prog. Polym. Sci. 2021, 114, 101366. https://doi.org/10.1016/j.progpolymsci.2021.101366.Search in Google Scholar
6. He, W., Song, P., Yu, B., Fang, Z., Wang, H. Prog. Mater. Sci. 2020, 114, 100687. https://doi.org/10.1016/j.pmatsci.2020.100687.Search in Google Scholar
7. Huo, S., Yang, S., Wang, J., Cheng, J., Zhang, Q., Hu, Y., Ding, G., Zhang, Q., Song, P. J. Hazard Mater. 2020, 386, 121984. https://doi.org/10.1016/j.jhazmat.2019.121984.Search in Google Scholar PubMed
8. Liu, L., Wang, Z. J. Hazard Mater. 2018, 357, 89–99. https://doi.org/10.1016/j.jhazmat.2018.05.052.Search in Google Scholar PubMed
9. Yang, S., Huo, S., Wang, J., Zhang, B., Wang, J., Ran, S., Fang, Z., Song, P., Wang, H. Compos. B Eng. 2021, 207, 108601. https://doi.org/10.1016/j.compositesb.2020.108601.Search in Google Scholar
10. Huo, S., Yang, S., Wang, J., Cheng, J., Zhang, Q., Hu, Y., Ding, G., Zhang, Q., Song, P., Wang, H. ACS Appl. Polym. Mater. 2020, 2, 3566–3575. https://doi.org/10.1021/acsapm.0c00577.Search in Google Scholar
11. Bai, Z., Song, L., Hu, Y., Yuen, R. Ind. Eng. Chem. Res. 2013, 52, 12855–12864. https://doi.org/10.1021/ie401662x.Search in Google Scholar
12. Yang, H., Shi, B., Xue, Y., Ma, Z., Liu, L., Liu, L., Yu, Y., Zhang, Z., Pratheep, K., Song, P. Biomacromolecules 2021, 22, 1432–1444. https://doi.org/10.1021/acs.biomac.0c01656.Search in Google Scholar PubMed
13. Zhang, C., Guo, X., Ma, S., Zheng, Y., Xu, J., Ma, H. J. Therm. Anal. Calorim. 2019, 137, 33–42. https://doi.org/10.1007/s10973-018-7943-y.Search in Google Scholar
14. Cheng, J., Wang, J., Yang, S., Zhang, Q., Huo, S., Zhang, Q., Hu, Y., Ding, G. Compos. B Eng. 2019, 177, 107440.10.1016/j.compositesb.2019.107440Search in Google Scholar
15. Xu, M., Ma, K., Jiang, D., Zhang, J., Zhao, M., Guo, X., Shao, Q., Wujcik, E., Li, B., Guo, Z. Polymer 2018, 146, 63–72. https://doi.org/10.1016/j.polymer.2018.05.018.Search in Google Scholar
16. Chu, F., Ma, C., Zhang, T., Xu, Z., Mu, X., Cai, W., Zhou, X., Ma, S., Zhou, Y., Hu, W., Song, L. Compos. B Eng. 2020, 190, 107925. https://doi.org/10.1016/j.compositesb.2020.107925.Search in Google Scholar
17. Liu, J., Dai, J., Wang, S., Peng, Y., Cao, L., Liu, X. Compos. B Eng. 2020, 190, 107926. https://doi.org/10.1016/j.compositesb.2020.107926.Search in Google Scholar
18. Cheng, J., Wang, J., Yang, S., Zhang, Q., Hu, Y., Ding, G., Huo, S. React. Funct. Polym. 2020, 146, 104412. https://doi.org/10.1016/j.reactfunctpolym.2019.104412.Search in Google Scholar
19. Ai, Y., Pang, F., Xu, Y., Jian, R. Ind. Eng. Chem. Res. 2020, 59, 11918–11929. https://doi.org/10.1021/acs.iecr.0c01277.Search in Google Scholar
20. Huo, S., Wang, J., Yang, S., Zhang, B., Tang, Y. J. Appl. Polym. Sci. 2016, 133, 43403. https://doi.org/10.1002/app.43403.Search in Google Scholar
21. Lee, W., Liu, L., Chen, C., Lin, J. Polym. Adv. Technol. 2014, 25, 36–40. https://doi.org/10.1002/pat.3201.Search in Google Scholar
22. Chen, G., Yu, Y., Chen, Z., Chen, Z., Li, C., Zhang, Q., Chen, T., Jiang, J. Polym. Adv. Technol. 2020, 31, 967–979. https://doi.org/10.1002/pat.4830.Search in Google Scholar
23. Dai, K., Deng, Z., Liu, G.,Wu, Y., Xu, W., Hu, Y. Polymers 2020, 12, 1441. https://doi.org/10.3390/polym12071441.Search in Google Scholar PubMed PubMed Central
24. Huo, S., Wang, J., Yang, S., Zhang, B., Zhang, B., Chen, X., Tang, Y. Polym. Degrad. Stab. 2016, 131, 106–113.10.1016/j.polymdegradstab.2016.07.013Search in Google Scholar
25. Chen, X., Wang, J., Huo, S., Yang, S., Zhang, B., Cai, H. J. Therm. Anal. Calorim. 2018, 132, 1617–1628. https://doi.org/10.1007/s10973-018-6979-3.Search in Google Scholar
26. Tao, X., Duan, H., Dong, W., Wang, X., Yang, S. Polym. Degrad. Stab. 2018, 154, 285–294. https://doi.org/10.1016/j.polymdegradstab.2018.06.015.Search in Google Scholar
27. Huo, S., Liu, Z., Wang, J. J. Therm. Anal. Calorim. 2020, 139, 1099–1110. https://doi.org/10.1007/s10973-019-08467-3.Search in Google Scholar
28. Guo, S., Bao, M., Ni, X. Polym. Adv. Technol. 2021, 32, 815–828. https://doi.org/10.1002/pat.5133.Search in Google Scholar
29. Jin, S., Qian, L., Qiu, Y., Chen, Y., Xin, F. Polym. Degrad. Stab. 2019, 166, 344–352. https://doi.org/10.1016/j.polymdegradstab.2019.06.024.Search in Google Scholar
30. Jia, L., Zhang, W., Tong, B., Yang, R. Chinese J. Polym. Sci. 2018, 36, 871–879. https://doi.org/10.1007/s10118-018-2098-7.Search in Google Scholar
31. Zhang, W., Camino, G., Yang, R. Prog. Polym. Sci. 2017, 67, 77–125. https://doi.org/10.1016/j.progpolymsci.2016.09.011.Search in Google Scholar
32. Chu, F., Qiu, S., Zhang, S., Xu, Z., Zhou, Y., Luo, X., Jiang, X., Song, L., Hu, W., Hu, Y. J. Colloid Interface Sci. 2022, 608, 142–157; https://doi.org/10.1016/j.jcis.2021.09.124.Search in Google Scholar PubMed
33. Chen, X., Hu, Y., Jiao, C., Song, L. Polym. Degrad. Stab. 2007, 92, 1141–1150. https://doi.org/10.1016/j.polymdegradstab.2007.01.031.Search in Google Scholar
34. Shi, X., Chen, L., Liu, B., Long, J., Xu, Y., Wang, Y. Chinese J. Polym. Sci. 2018, 36, 1375–1384. https://doi.org/10.1007/s10118-018-2164-1.Search in Google Scholar
35. Wan, C., Liu, M., He, P., Zhang, G., Zhang, F. Ind. Crops. Prod. 2020, 154, 112625. https://doi.org/10.1016/j.indcrop.2020.112625.Search in Google Scholar
36. Qian, L., Li, L., Chen, Y., Xu, B., Qiu, Y. Compos. B Eng. 2019, 175, 107186. https://doi.org/10.1016/j.compositesb.2019.107186.Search in Google Scholar
37. Yang, S., Wang, J., Huo, S., Wang, M., Chen, L. Ind. Eng. Chem. Res. 2015, 54, 7777–7786. https://doi.org/10.1021/acs.iecr.5b02026.Search in Google Scholar
38. Xue, Y., Shen, M., Zheng, Y., Tao, W., Han, Y., Li, W., Song, P., Wang, H. Compos. B Eng. 2020, 183, 107695. https://doi.org/10.1016/j.compositesb.2019.107695.Search in Google Scholar
39. Qiu, Y., Qian, L., Chen, Y., Hao, J. Compos. B Eng. 2019, 178, 107481. https://doi.org/10.1016/j.compositesb.2019.107481.Search in Google Scholar
40. Wang, P., Chen, L., Xiao, H., Zhan, T. Polym. Degrad. Stab. 2020, 171, 109023. https://doi.org/10.1016/j.polymdegradstab.2019.109023.Search in Google Scholar
41. Sai, T., Ran, S., Guo, Z., Yan, H., Zhang, Y., Wang, H., Song, P., Fang, Z. Chem. Eng. J. 2021, 409, 128223. https://doi.org/10.1016/j.cej.2020.128223.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0317).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites
Articles in the same Issue
- Frontmatter
- Material properties
- Effect of nanodiamond particles on the structure, mechanical, and thermal properties of polymer embedded ND/PMMA composites
- A comparative investigation on wear characteristics of polymer and biopolymer gears
- Unsaturated polyester resin modified with a novel reactive flame retardant: effects on thermal stability and flammability
- Recent progress on the morphology and thermal cycle of phase change materials (PCMs)/conductive filler composites: a mini review
- Effect of tiny amount of DMC on thermal, mechanical, optical, and water resistance properties of poly(vinyl alcohol)
- Vibration and tribological properties of epoxy-granite composites used as novel foundations for machine elements
- Effect of lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites
- Engineering and processing
- Quality prediction and control of thin-walled shell injection molding based on GWO-PSO, ACO-BP, and NSGA-II
- Doubly modified MWCNTs embedded in polyethersulfone (PES) ultrafiltration membrane and its anti-fouling performance
- Solid-state extrusion of polymers using simple shear deformation
- Molding process and properties of polyimide-fiber-fabric-reinforced polyether ether ketone composites